{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c86c965a400>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1693229021885979457, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGaC6rvpAmE+zuqpPYaXkr55rsQ8hu2tPQAAAAAAAAAAzX6vPWghjz9lWYE+dhPjvlNJGz6AiiA+AAAAAAAAAAAzHpU9FOiyuimsDTnSvTA0YghKOjzmILgAAIA/AACAP4DYTr0XIrw/36Axv37wlj6SYn88M/WavQAAAAAAAAAAzdc6voo6nT8Rz4S+1qD1vkE2cr5Kv5u8AAAAAAAAAAA6oqY+DIFhP7ZHs7305MW+1y5DPtV9Q74AAAAAAAAAAPMzvj0BdYO8wm1SPOPxHzx/N+m9VSIFPQAAgD8AAIA/mimzPbIrpz6Kiaa+eVaOvkZewb0a1Q69AAAAAAAAAAAATWm9hauxuxBpOD6vQDe+dB8+PF5JDb8AAIA/AACAP2b6W7z2eBu63XWcs9RC3i5z6CM78jewMwAAgD8AAIA/AOR1vA9OfT34E3o9J5tXvjkMbz0o+968AAAAAAAAAACAMGG9eH07P/OQoT1tkbC+CBDYvDhnGT0AAAAAAAAAAIB8CT1BzCo+lvoKvi4aE754kcK9DbuJPQAAAAAAAAAA5v9tvezFiDqNcCQ+9kUNvk0q/bsdguU9AAAAAAAAAABgwI4+DcBfPzu9fb6BzNm+tnAdPgHEPb4AAAAAAAAAAAAuBr3ZsTQ+OplhPtW7Pr4D70k9xKLIPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVPAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHKCTnNgSe2MAWyUTTQBjAF0lEdAkjp9OqNp/XV9lChoBkdAcmMKFZgXuWgHTWIBaAhHQJI73p9qk/N1fZQoaAZHQHG+ww482aVoB00IAWgIR0CSO/wVCXyBdX2UKGgGR0ByU0jqv/zbaAdNLQFoCEdAkjxFLi++NHV9lChoBkdAQubSqlxffGgHS+BoCEdAkj13Jgb6xnV9lChoBkdAbH5VEuxrz2gHTRYCaAhHQJI9dNyo4uN1fZQoaAZHQG8sLK3d9DxoB00sAWgIR0CSPZvKEFnqdX2UKGgGR0BvcxagVXV9aAdNDQFoCEdAkkAglv60pnV9lChoBkdAcnMr0rbxmWgHTSYBaAhHQJJAc44p+c91fZQoaAZHQHDqzgEU0vZoB01BAWgIR0CSQLbY9Pk8dX2UKGgGR0BtCo97ngYQaAdNRAFoCEdAkkE5jtoi93V9lChoBkdActtbPhQ3xWgHTSABaAhHQJJBPN/vv0B1fZQoaAZHQHEwt4u9OARoB00+AWgIR0CSRJ1y/9HddX2UKGgGR0BzAVbMX7+DaAdL8mgIR0CSR2Tuv2XcdX2UKGgGR0BzI7rqt5lfaAdNSwFoCEdAkkeAXIlt0nV9lChoBkdAcmLFz+3pfWgHTW8BaAhHQJJHqiDdxhl1fZQoaAZHQHHaYmTkhidoB00pAWgIR0CSSI64lQdkdX2UKGgGR0BxUUpYs/Y8aAdNKQFoCEdAkknQ/TsponV9lChoBkdAcA/ofjjrA2gHTTIBaAhHQJJKWaH9FWp1fZQoaAZHQHEiRbjcVQBoB00VA2gIR0CSS1UZNwirdX2UKGgGR0BvsF7dBSk1aAdNMwFoCEdAkku2z8gp0HV9lChoBkdAcbHCojv/i2gHTTMBaAhHQJJLsv38GcF1fZQoaAZHQHG3c+7lJYloB009AWgIR0CSTDx//echdX2UKGgGR0BxYBaFEiMYaAdNHgFoCEdAkk1aQV9F4XV9lChoBkdAcFDXb/Ot4mgHTSQBaAhHQJJOh7w8W9F1fZQoaAZHQHCNcn3L3bpoB006AWgIR0CSTsgi/wiJdX2UKGgGR0BwnMWJrLyMaAdNRgFoCEdAkk9xUJfICHV9lChoBkdAcLgpjc2zfWgHTWUBaAhHQJJPwVnEl3R1fZQoaAZHQHISDQeFL39oB01VAWgIR0CSUkT8YQ8PdX2UKGgGR0Bwk71lGwzMaAdNLQFoCEdAklK10o0ALnV9lChoBkdAbuwDaGpMpWgHTTMBaAhHQJJS+HDaXa91fZQoaAZHQHKgncDbJwNoB00jAWgIR0CSUyMXJo0zdX2UKGgGR0ByykQL/jsEaAdNFQFoCEdAklTZuIhyKnV9lChoBkdAcPMnYg7o0WgHTWwBaAhHQJJU/wH7gsN1fZQoaAZHQHJwLHEMspZoB00bAWgIR0CSVYh+vyLAdX2UKGgGR0BxK2qjrRjSaAdNCAFoCEdAklXMdo3713V9lChoBkdAb5uAOJ+DvmgHTUABaAhHQJJWDpnpSrJ1fZQoaAZHQG/SG+0w8GNoB01dAWgIR0CSVkzp5eJIdX2UKGgGR0ByOYvWYnfEaAdNGwFoCEdAkldCGFi8WnV9lChoBkdAcqu2FWXC0mgHTXsBaAhHQJJX+qZML4N1fZQoaAZHQHJc3IdU83doB00pAWgIR0CSWK1r6+FldX2UKGgGR0Bx6mMYMvytaAdNXgFoCEdAklmXF1jiGXV9lChoBkdAcRbJ+DvmYGgHTd4BaAhHQJJZ1UrCm/F1fZQoaAZHQHCzdwm3OOdoB01GAWgIR0CSWfXjENvwdX2UKGgGR0BzGxjDsMRZaAdNEAFoCEdAkmueuzQeFXV9lChoBkdAb52AR02ca2gHTT0BaAhHQJJsa+JxecB1fZQoaAZHQHCyJqqOtGNoB00zAWgIR0CSbH8v24/edX2UKGgGR0Byc4J4SpR5aAdNMQFoCEdAkmzXPRiPQ3V9lChoBkdAcXjHpbD/EWgHTRQBaAhHQJJtsSsbNr11fZQoaAZHQHEthgqmTDBoB00MAWgIR0CSbjTodMkAdX2UKGgGR0Bw26CpWFN+aAdNJQFoCEdAkm7GWIGhVXV9lChoBkdAbH8WLxZuAWgHTRIBaAhHQJJu9ipeeFt1fZQoaAZHQG5KigsbvPVoB00aAWgIR0CSbvS5iExqdX2UKGgGR0Bxnusny/bkaAdNRAFoCEdAkm8yHARChXV9lChoBkdAcW9/WDpTuWgHTTIBaAhHQJJw25uqFRJ1fZQoaAZHQHFTJc5bQkZoB00JAWgIR0CScRBKtga4dX2UKGgGR0BtK9YfW+XaaAdNQQFoCEdAknIHNcGC7XV9lChoBkdAcS/u3c580GgHTQ0BaAhHQJJyXBFd9lV1fZQoaAZHQHGPydz4k/toB00qAWgIR0CSctE7nxJ/dX2UKGgGR0BxfFD7ZWaMaAdL+mgIR0CScy7TUiIMdX2UKGgGR0BxjhML4N7TaAdNRwFoCEdAknPVMdtEX3V9lChoBkdAcKR12q1gIGgHTQgBaAhHQJJ0suOCGvh1fZQoaAZHQHBQ82rGR3hoB00KAWgIR0CSdZlZ5iVjdX2UKGgGR0Bwae/tY0VKaAdNNAFoCEdAknXNhRZU1nV9lChoBkdAce1ylvZRK2gHTU8BaAhHQJJ2pfZ26kJ1fZQoaAZHQHBy7bpNbkhoB00jAWgIR0CSdyC9ytFKdX2UKGgGR0ByJGw7kn1GaAdNEQFoCEdAkndSRwIdEXV9lChoBkdAbI45IYm9hGgHTRQBaAhHQJJ3tUOuq3p1fZQoaAZHQHB9RsMy8BdoB00vAWgIR0CSeIRMvh60dX2UKGgGR0Bws9bILgGbaAdNCQFoCEdAknoNYnv2G3V9lChoBkdAcWqWy1NQCWgHTWEBaAhHQJJ6damoBJZ1fZQoaAZHQHDAwavRqoJoB00kAWgIR0CSeuZJkGzKdX2UKGgGR0Bym9UXHim3aAdNCwFoCEdAknt8H8jzI3V9lChoBkdAVCX7di2Dx2gHS/loCEdAknxfcafjCHV9lChoBkdAcjM5Gz8gp2gHTUQBaAhHQJJ+RDD0lJJ1fZQoaAZHQHBoncxj8UFoB00bAWgIR0CSfsf4h2W6dX2UKGgGR0Bw9zlq8DjjaAdNQQFoCEdAkn7ZKaoddXV9lChoBkdAb4VA0Kqn32gHTQIBaAhHQJKAcJSiudR1fZQoaAZHQG9YYJNTLntoB00pAWgIR0CSgLXoTwlTdX2UKGgGR0BxdLFo+OfeaAdNHQFoCEdAkoFdPxhDxHV9lChoBkdAc0K9l2/zrmgHS/loCEdAkoGLOVxCIHV9lChoBkdAblTkEs8PnWgHTQ8BaAhHQJKCoNWluWN1fZQoaAZHQHMNIo3Jgb9oB01FAWgIR0CShEkv9LpSdX2UKGgGR0ByQpHoX9BKaAdNNwFoCEdAkoTHj6vaDnV9lChoBkdAcemnc+JP7GgHTQkBaAhHQJKFLZElVtJ1fZQoaAZHQHAlKpcX3xpoB006AWgIR0CShb/Aj6eodX2UKGgGR0Byg8IToMa1aAdNAgFoCEdAkoZXvH93r3V9lChoBkdAcVKyWAwwkGgHTUQBaAhHQJKIHCDVYp51fZQoaAZHQG+m0Z3s5XFoB01LAWgIR0CSiPAU+LWJdX2UKGgGR0ByWaJxeb/faAdL9GgIR0CSiWQk5ZKWdX2UKGgGR0BwS/vRZ2ZBaAdNOgFoCEdAkonowyqMnHV9lChoBkdAcTeyq+8Gs2gHTRYBaAhHQJKKSfqX4TN1fZQoaAZHQG3bmecx0uFoB00SAWgIR0CSipvYvnKXdX2UKGgGR0BxvIrxy4nXaAdL/2gIR0CSi10PH1e0dX2UKGgGR0BywGtozvZzaAdNDwFoCEdAkoySUxEfDHV9lChoBkdAcW6gsbvPT2gHTR0BaAhHQJKM4GD+R5l1fZQoaAZHQG5tKLbYbsFoB000AWgIR0CSjRUzbeuWdX2UKGgGR0BwA/ye7L+xaAdNJwFoCEdAko4BJiAlOXV9lChoBkdAcdDCeEqUeWgHTRcBaAhHQJKOrjBEa2p1fZQoaAZHQHHQ0Y0l7dBoB0v9aAhHQJKPSoS+QEJ1ZS4="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}