adishourya
commited on
adishourya/medpix_pg
Browse files
README.md
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: google/paligemma-3b-mix-448
|
3 |
+
library_name: peft
|
4 |
+
license: gemma
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
model-index:
|
8 |
+
- name: results__fullrun__2110-104610
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# results__fullrun__2110-104610
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [google/paligemma-3b-mix-448](https://huggingface.co/google/paligemma-3b-mix-448) on an unknown dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 3.2421
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 1e-05
|
39 |
+
- train_batch_size: 8
|
40 |
+
- eval_batch_size: 8
|
41 |
+
- seed: 42
|
42 |
+
- gradient_accumulation_steps: 8
|
43 |
+
- total_train_batch_size: 64
|
44 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
+
- lr_scheduler_type: constant
|
46 |
+
- lr_scheduler_warmup_steps: 2
|
47 |
+
- num_epochs: 20
|
48 |
+
- mixed_precision_training: Native AMP
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
53 |
+
|:-------------:|:-------:|:----:|:---------------:|
|
54 |
+
| 2.6855 | 0.9952 | 180 | 2.6276 |
|
55 |
+
| 2.4044 | 1.9959 | 361 | 2.4716 |
|
56 |
+
| 2.2275 | 2.9965 | 542 | 2.4070 |
|
57 |
+
| 2.092 | 3.9972 | 723 | 2.3871 |
|
58 |
+
| 1.9761 | 4.9979 | 904 | 2.3929 |
|
59 |
+
| 1.8674 | 5.9986 | 1085 | 2.4194 |
|
60 |
+
| 1.7501 | 6.9993 | 1266 | 2.4726 |
|
61 |
+
| 1.6706 | 8.0 | 1447 | 2.5062 |
|
62 |
+
| 1.5599 | 8.9952 | 1627 | 2.5492 |
|
63 |
+
| 1.4896 | 9.9959 | 1808 | 2.6080 |
|
64 |
+
| 1.4289 | 10.9965 | 1989 | 2.6687 |
|
65 |
+
| 1.3458 | 11.9972 | 2170 | 2.7300 |
|
66 |
+
| 1.2746 | 12.9979 | 2351 | 2.7933 |
|
67 |
+
| 1.2656 | 13.9986 | 2532 | 2.8295 |
|
68 |
+
| 1.1751 | 14.9993 | 2713 | 2.9203 |
|
69 |
+
| 1.1792 | 16.0 | 2894 | 2.9811 |
|
70 |
+
| 1.0851 | 16.9952 | 3074 | 3.0481 |
|
71 |
+
| 1.0966 | 17.9959 | 3255 | 3.0981 |
|
72 |
+
| 1.0581 | 18.9965 | 3436 | 3.1394 |
|
73 |
+
| 1.0055 | 19.9032 | 3600 | 3.2421 |
|
74 |
+
|
75 |
+
|
76 |
+
### Framework versions
|
77 |
+
|
78 |
+
- PEFT 0.13.0
|
79 |
+
- Transformers 4.45.1
|
80 |
+
- Pytorch 2.3.0.post101
|
81 |
+
- Datasets 2.19.1
|
82 |
+
- Tokenizers 0.20.0
|