"""GPT Blocks used for the GPT Model.""" from typing import Any, Dict, Optional, Tuple import torch import torch.nn as nn from .attention import ATTN_CLASS_REGISTRY from .ffn import FFN_CLASS_REGISTRY, build_ffn from .norm import NORM_CLASS_REGISTRY class MPTBlock(nn.Module): def __init__(self, d_model: int, n_heads: int, expansion_ratio: int, attn_config: Optional[Dict]=None, ffn_config: Optional[Dict]=None, resid_pdrop: float=0.0, norm_type: str='low_precision_layernorm', verbose: int=0, fc_type: str='torch', device: Optional[str]=None, **kwargs: Any): if attn_config is None: attn_config = {'attn_type': 'multihead_attention', 'attn_pdrop': 0.0, 'attn_impl': 'triton', 'qk_ln': False, 'clip_qkv': None, 'softmax_scale': None, 'prefix_lm': False, 'attn_uses_sequence_id': False, 'alibi': False, 'alibi_bias_max': 8} if ffn_config is None: ffn_config = {'ffn_type': 'mptmlp'} del kwargs super().__init__() norm_class = NORM_CLASS_REGISTRY[norm_type.lower()] assert isinstance(attn_config['attn_type'], str) attn_class = ATTN_CLASS_REGISTRY[attn_config['attn_type']] self.norm_1 = norm_class(d_model, device=device) self.attn = attn_class(d_model=d_model, n_heads=n_heads, attn_impl=attn_config['attn_impl'], clip_qkv=attn_config['clip_qkv'], qk_ln=attn_config['qk_ln'], softmax_scale=attn_config['softmax_scale'], attn_pdrop=attn_config['attn_pdrop'], norm_type=norm_type, fc_type=fc_type, verbose=verbose, device=device) self.norm_2 = None if not getattr(FFN_CLASS_REGISTRY[ffn_config['ffn_type']], '_has_norm', False): self.norm_2 = norm_class(d_model, device=device) self.ffn = build_ffn(d_model=d_model, expansion_ratio=expansion_ratio, device=device, **ffn_config) self.resid_attn_dropout = nn.Dropout(resid_pdrop) self.resid_ffn_dropout = nn.Dropout(resid_pdrop) def forward(self, x: torch.Tensor, past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]]=None, attn_bias: Optional[torch.Tensor]=None, attention_mask: Optional[torch.ByteTensor]=None, is_causal: bool=True) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor, torch.Tensor]]]: a = self.norm_1(x) (b, attn_weights, past_key_value) = self.attn(a, past_key_value=past_key_value, attn_bias=attn_bias, attention_mask=attention_mask, is_causal=is_causal) x = x + self.resid_attn_dropout(b) m = x if self.norm_2 is not None: m = self.norm_2(x) n = self.ffn(m) x = x + self.resid_ffn_dropout(n) return (x, attn_weights, past_key_value)