adriata commited on
Commit
d3b9cd1
1 Parent(s): 188cca0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +95 -0
README.md CHANGED
@@ -1,3 +1,98 @@
1
  ---
2
  license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
+ library_name: transformers
4
+ tags:
5
+ - trl
6
+ - sft
7
+ datasets:
8
+ - pubmed
9
+ - bigbio/czi_drsm
10
+ - bigbio/bc5cdr
11
+ - bigbio/distemist
12
+ - pubmed_qa
13
+ - medmcqa
14
  ---
15
+
16
+ # Model Card for med_mistral
17
+
18
+ <!-- Provide a quick summary of what the model is/does. -->
19
+
20
+
21
+
22
+ ## Model Details
23
+
24
+ ### Model Description
25
+
26
+ <!-- Provide a longer summary of what this model is. -->
27
+
28
+ Model Mistral-7B-Instruct-v0.2 finetuned with QLoRA on multiple medical datasets.
29
+
30
+ 4-bit version: [med_mistral_4bit](https://huggingface.co/adriata/med_mistral_4bit)
31
+
32
+ - **License:** apache-2.0
33
+ - **Finetuned from model :** mistralai/Mistral-7B-Instruct-v0.2
34
+
35
+ ### Model Sources [optional]
36
+
37
+ <!-- Provide the basic links for the model. -->
38
+
39
+ - **Repository:** https://github.com/atadria/med_llm
40
+
41
+ ## Uses
42
+
43
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
44
+
45
+ The model is finetuned on medical data and is intended only for research. It should not be used as a substitute for professional medical advice, diagnosis, or treatment.
46
+
47
+ ## Bias, Risks, and Limitations
48
+
49
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
50
+ The model's predictions are based on the information available in the finetuned medical dataset. It may not generalize well to all medical conditions or diverse patient populations.
51
+
52
+ Sensitivity to variations in input data and potential biases present in the training data may impact the model's performance.
53
+
54
+ ### Recommendations
55
+
56
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
57
+
58
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
59
+
60
+ ## How to Get Started with the Model
61
+
62
+ Use the code below to get started with the model.
63
+
64
+ ```python
65
+ # !pip install -q transformers accelerate bitsandbytes
66
+
67
+ from transformers import AutoTokenizer, AutoModelForCausalLM
68
+
69
+ tokenizer = AutoTokenizer.from_pretrained("adriata/med_mistral")
70
+ model = AutoModelForCausalLM.from_pretrained("adriata/med_mistral")
71
+
72
+ prompt_template = """<s>[INST] {prompt} [/INST]"""
73
+
74
+ prompt = "What is influenza?"
75
+
76
+ model_inputs = tokenizer.encode(prompt_template.format(prompt=prompt),
77
+ return_tensors="pt").to("cuda")
78
+
79
+ generated_ids = model.generate(model_inputs, max_new_tokens=512, do_sample=True)
80
+ decoded = tokenizer.batch_decode(generated_ids)
81
+ print(decoded[0])
82
+ ```
83
+
84
+ ## Training Details
85
+ ~13h - 20k examples x 1 epoch
86
+
87
+ GPU: OVH - 1 × NVIDIA TESLA V100S (32 GiB RAM)
88
+
89
+ ### Training Data
90
+
91
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
92
+ Training data included 20k examples randomly selected from datasets:
93
+ - pubmed
94
+ - bigbio/czi_drsm
95
+ - bigbio/bc5cdr
96
+ - bigbio/distemist
97
+ - pubmed_qa
98
+ - medmcqa