advaitadasein nielsr HF staff commited on
Commit
eaa60c2
0 Parent(s):

Duplicate from Salesforce/blip2-opt-2.7b

Browse files

Co-authored-by: Niels Rogge <nielsr@users.noreply.huggingface.co>

.gitattributes ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tflite filter=lfs diff=lfs merge=lfs -text
29
+ *.tgz filter=lfs diff=lfs merge=lfs -text
30
+ *.wasm filter=lfs diff=lfs merge=lfs -text
31
+ *.xz filter=lfs diff=lfs merge=lfs -text
32
+ *.zip filter=lfs diff=lfs merge=lfs -text
33
+ *.zst filter=lfs diff=lfs merge=lfs -text
34
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,164 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ license: mit
4
+ tags:
5
+ - vision
6
+ - image-to-text
7
+ - image-captioning
8
+ - visual-question-answering
9
+ pipeline_tag: image-to-text
10
+ duplicated_from: Salesforce/blip2-opt-2.7b
11
+ ---
12
+
13
+ # BLIP-2, OPT-2.7b, pre-trained only
14
+
15
+ BLIP-2 model, leveraging [OPT-2.7b](https://huggingface.co/facebook/opt-2.7b) (a large language model with 2.7 billion parameters).
16
+ It was introduced in the paper [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597) by Li et al. and first released in [this repository](https://github.com/salesforce/LAVIS/tree/main/projects/blip2).
17
+
18
+ Disclaimer: The team releasing BLIP-2 did not write a model card for this model so this model card has been written by the Hugging Face team.
19
+
20
+ ## Model description
21
+
22
+ BLIP-2 consists of 3 models: a CLIP-like image encoder, a Querying Transformer (Q-Former) and a large language model.
23
+
24
+ The authors initialize the weights of the image encoder and large language model from pre-trained checkpoints and keep them frozen
25
+ while training the Querying Transformer, which is a BERT-like Transformer encoder that maps a set of "query tokens" to query embeddings,
26
+ which bridge the gap between the embedding space of the image encoder and the large language model.
27
+
28
+ The goal for the model is simply to predict the next text token, giving the query embeddings and the previous text.
29
+
30
+ <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/blip2_architecture.jpg"
31
+ alt="drawing" width="600"/>
32
+
33
+ This allows the model to be used for tasks like:
34
+
35
+ - image captioning
36
+ - visual question answering (VQA)
37
+ - chat-like conversations by feeding the image and the previous conversation as prompt to the model
38
+
39
+ ## Direct Use and Downstream Use
40
+
41
+ You can use the raw model for conditional text generation given an image and optional text. See the [model hub](https://huggingface.co/models?search=Salesforce/blip) to look for
42
+ fine-tuned versions on a task that interests you.
43
+
44
+ ## Bias, Risks, Limitations, and Ethical Considerations
45
+
46
+ BLIP2-OPT uses off-the-shelf OPT as the language model. It inherits the same risks and limitations as mentioned in Meta's model card.
47
+
48
+ > Like other large language models for which the diversity (or lack thereof) of training
49
+ > data induces downstream impact on the quality of our model, OPT-175B has limitations in terms
50
+ > of bias and safety. OPT-175B can also have quality issues in terms of generation diversity and
51
+ > hallucination. In general, OPT-175B is not immune from the plethora of issues that plague modern
52
+ > large language models.
53
+ >
54
+ BLIP2 is fine-tuned on image-text datasets (e.g. [LAION](https://laion.ai/blog/laion-400-open-dataset/) ) collected from the internet. As a result the model itself is potentially vulnerable to generating equivalently inappropriate content or replicating inherent biases in the underlying data.
55
+
56
+ BLIP2 has not been tested in real world applications. It should not be directly deployed in any applications. Researchers should first carefully assess the safety and fairness of the model in relation to the specific context they’re being deployed within.
57
+
58
+
59
+ ### How to use
60
+
61
+ For code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/main/en/model_doc/blip-2#transformers.Blip2ForConditionalGeneration.forward.example).
62
+
63
+ #### Running the model on CPU
64
+
65
+ <details>
66
+ <summary> Click to expand </summary>
67
+
68
+ ```python
69
+ import requests
70
+ from PIL import Image
71
+ from transformers import Blip2Processor, Blip2ForConditionalGeneration
72
+
73
+ processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
74
+ model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b")
75
+
76
+ img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
77
+ raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
78
+
79
+ question = "how many dogs are in the picture?"
80
+ inputs = processor(raw_image, question, return_tensors="pt")
81
+
82
+ out = model.generate(**inputs)
83
+ print(processor.decode(out[0], skip_special_tokens=True).strip())
84
+ ```
85
+ </details>
86
+
87
+ #### Running the model on GPU
88
+
89
+ ##### In full precision
90
+
91
+ <details>
92
+ <summary> Click to expand </summary>
93
+
94
+ ```python
95
+ # pip install accelerate
96
+ import requests
97
+ from PIL import Image
98
+ from transformers import Blip2Processor, Blip2ForConditionalGeneration
99
+
100
+ processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
101
+ model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", device_map="auto")
102
+
103
+ img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
104
+ raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
105
+
106
+ question = "how many dogs are in the picture?"
107
+ inputs = processor(raw_image, question, return_tensors="pt").to("cuda")
108
+
109
+ out = model.generate(**inputs)
110
+ print(processor.decode(out[0], skip_special_tokens=True).strip())
111
+ ```
112
+ </details>
113
+
114
+ ##### In half precision (`float16`)
115
+
116
+ <details>
117
+ <summary> Click to expand </summary>
118
+
119
+ ```python
120
+ # pip install accelerate
121
+ import torch
122
+ import requests
123
+ from PIL import Image
124
+ from transformers import Blip2Processor, Blip2ForConditionalGeneration
125
+
126
+ processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
127
+ model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16, device_map="auto")
128
+
129
+ img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
130
+ raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
131
+
132
+ question = "how many dogs are in the picture?"
133
+ inputs = processor(raw_image, question, return_tensors="pt").to("cuda", torch.float16)
134
+
135
+ out = model.generate(**inputs)
136
+ print(processor.decode(out[0], skip_special_tokens=True).strip())
137
+ ```
138
+ </details>
139
+
140
+ ##### In 8-bit precision (`int8`)
141
+
142
+ <details>
143
+ <summary> Click to expand </summary>
144
+
145
+ ```python
146
+ # pip install accelerate bitsandbytes
147
+ import torch
148
+ import requests
149
+ from PIL import Image
150
+ from transformers import Blip2Processor, Blip2ForConditionalGeneration
151
+
152
+ processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
153
+ model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", load_in_8bit=True, device_map="auto")
154
+
155
+ img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
156
+ raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
157
+
158
+ question = "how many dogs are in the picture?"
159
+ inputs = processor(raw_image, question, return_tensors="pt").to("cuda", torch.float16)
160
+
161
+ out = model.generate(**inputs)
162
+ print(processor.decode(out[0], skip_special_tokens=True).strip())
163
+ ```
164
+ </details>
config.json ADDED
@@ -0,0 +1,255 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_commit_hash": null,
3
+ "architectures": [
4
+ "Blip2ForConditionalGeneration"
5
+ ],
6
+ "initializer_factor": 1.0,
7
+ "initializer_range": 0.02,
8
+ "model_type": "blip-2",
9
+ "num_query_tokens": 32,
10
+ "qformer_config": {
11
+ "_name_or_path": "",
12
+ "add_cross_attention": false,
13
+ "architectures": null,
14
+ "attention_probs_dropout_prob": 0.1,
15
+ "bad_words_ids": null,
16
+ "begin_suppress_tokens": null,
17
+ "bos_token_id": null,
18
+ "chunk_size_feed_forward": 0,
19
+ "classifier_dropout": null,
20
+ "cross_attention_frequency": 2,
21
+ "cross_attention_hidden_size": null,
22
+ "decoder_start_token_id": null,
23
+ "diversity_penalty": 0.0,
24
+ "do_sample": false,
25
+ "early_stopping": false,
26
+ "encoder_hidden_size": 1408,
27
+ "encoder_no_repeat_ngram_size": 0,
28
+ "eos_token_id": null,
29
+ "exponential_decay_length_penalty": null,
30
+ "finetuning_task": null,
31
+ "forced_bos_token_id": null,
32
+ "forced_eos_token_id": null,
33
+ "hidden_act": "gelu",
34
+ "hidden_dropout_prob": 0.1,
35
+ "hidden_size": 768,
36
+ "id2label": {
37
+ "0": "LABEL_0",
38
+ "1": "LABEL_1"
39
+ },
40
+ "initializer_range": 0.02,
41
+ "intermediate_size": 3072,
42
+ "is_decoder": false,
43
+ "is_encoder_decoder": false,
44
+ "label2id": {
45
+ "LABEL_0": 0,
46
+ "LABEL_1": 1
47
+ },
48
+ "layer_norm_eps": 1e-12,
49
+ "length_penalty": 1.0,
50
+ "max_length": 20,
51
+ "max_position_embeddings": 512,
52
+ "min_length": 0,
53
+ "model_type": "blip_2_qformer",
54
+ "no_repeat_ngram_size": 0,
55
+ "num_attention_heads": 12,
56
+ "num_beam_groups": 1,
57
+ "num_beams": 1,
58
+ "num_hidden_layers": 12,
59
+ "num_return_sequences": 1,
60
+ "output_attentions": false,
61
+ "output_hidden_states": false,
62
+ "output_scores": false,
63
+ "pad_token_id": 0,
64
+ "position_embedding_type": "absolute",
65
+ "prefix": null,
66
+ "problem_type": null,
67
+ "pruned_heads": {},
68
+ "remove_invalid_values": false,
69
+ "repetition_penalty": 1.0,
70
+ "return_dict": true,
71
+ "return_dict_in_generate": false,
72
+ "sep_token_id": null,
73
+ "suppress_tokens": null,
74
+ "task_specific_params": null,
75
+ "temperature": 1.0,
76
+ "tf_legacy_loss": false,
77
+ "tie_encoder_decoder": false,
78
+ "tie_word_embeddings": true,
79
+ "tokenizer_class": null,
80
+ "top_k": 50,
81
+ "top_p": 1.0,
82
+ "torch_dtype": null,
83
+ "torchscript": false,
84
+ "transformers_version": "4.27.0.dev0",
85
+ "typical_p": 1.0,
86
+ "use_bfloat16": false,
87
+ "vocab_size": 30522
88
+ },
89
+ "text_config": {
90
+ "_name_or_path": "facebook/opt-2.7b",
91
+ "_remove_final_layer_norm": false,
92
+ "activation_dropout": 0.0,
93
+ "activation_function": "relu",
94
+ "add_cross_attention": false,
95
+ "architectures": [
96
+ "OPTForCausalLM"
97
+ ],
98
+ "attention_dropout": 0.0,
99
+ "bad_words_ids": null,
100
+ "begin_suppress_tokens": null,
101
+ "bos_token_id": 2,
102
+ "chunk_size_feed_forward": 0,
103
+ "cross_attention_hidden_size": null,
104
+ "decoder_start_token_id": null,
105
+ "diversity_penalty": 0.0,
106
+ "do_layer_norm_before": true,
107
+ "do_sample": false,
108
+ "dropout": 0.1,
109
+ "early_stopping": false,
110
+ "enable_bias": true,
111
+ "encoder_no_repeat_ngram_size": 0,
112
+ "eos_token_id": 50118,
113
+ "exponential_decay_length_penalty": null,
114
+ "ffn_dim": 10240,
115
+ "finetuning_task": null,
116
+ "forced_bos_token_id": null,
117
+ "forced_eos_token_id": null,
118
+ "hidden_size": 2560,
119
+ "id2label": {
120
+ "0": "LABEL_0",
121
+ "1": "LABEL_1"
122
+ },
123
+ "init_std": 0.02,
124
+ "is_decoder": false,
125
+ "is_encoder_decoder": false,
126
+ "label2id": {
127
+ "LABEL_0": 0,
128
+ "LABEL_1": 1
129
+ },
130
+ "layer_norm_elementwise_affine": true,
131
+ "layerdrop": 0.0,
132
+ "length_penalty": 1.0,
133
+ "max_length": 20,
134
+ "max_position_embeddings": 2048,
135
+ "min_length": 0,
136
+ "model_type": "opt",
137
+ "no_repeat_ngram_size": 0,
138
+ "num_attention_heads": 32,
139
+ "num_beam_groups": 1,
140
+ "num_beams": 1,
141
+ "num_hidden_layers": 32,
142
+ "num_return_sequences": 1,
143
+ "output_attentions": false,
144
+ "output_hidden_states": false,
145
+ "output_scores": false,
146
+ "pad_token_id": 1,
147
+ "prefix": "</s>",
148
+ "problem_type": null,
149
+ "pruned_heads": {},
150
+ "remove_invalid_values": false,
151
+ "repetition_penalty": 1.0,
152
+ "return_dict": true,
153
+ "return_dict_in_generate": false,
154
+ "sep_token_id": null,
155
+ "suppress_tokens": null,
156
+ "task_specific_params": null,
157
+ "temperature": 1.0,
158
+ "tf_legacy_loss": false,
159
+ "tie_encoder_decoder": false,
160
+ "tie_word_embeddings": true,
161
+ "tokenizer_class": null,
162
+ "top_k": 50,
163
+ "top_p": 1.0,
164
+ "torch_dtype": "float16",
165
+ "torchscript": false,
166
+ "transformers_version": "4.27.0.dev0",
167
+ "typical_p": 1.0,
168
+ "use_bfloat16": false,
169
+ "use_cache": true,
170
+ "vocab_size": 50272,
171
+ "word_embed_proj_dim": 2560
172
+ },
173
+ "torch_dtype": "float32",
174
+ "transformers_version": null,
175
+ "use_decoder_only_language_model": true,
176
+ "vision_config": {
177
+ "_name_or_path": "",
178
+ "add_cross_attention": false,
179
+ "architectures": null,
180
+ "attention_dropout": 0.0,
181
+ "bad_words_ids": null,
182
+ "begin_suppress_tokens": null,
183
+ "bos_token_id": null,
184
+ "chunk_size_feed_forward": 0,
185
+ "cross_attention_hidden_size": null,
186
+ "decoder_start_token_id": null,
187
+ "diversity_penalty": 0.0,
188
+ "do_sample": false,
189
+ "dropout": 0.0,
190
+ "early_stopping": false,
191
+ "encoder_no_repeat_ngram_size": 0,
192
+ "eos_token_id": null,
193
+ "exponential_decay_length_penalty": null,
194
+ "finetuning_task": null,
195
+ "forced_bos_token_id": null,
196
+ "forced_eos_token_id": null,
197
+ "hidden_act": "gelu",
198
+ "hidden_size": 1408,
199
+ "id2label": {
200
+ "0": "LABEL_0",
201
+ "1": "LABEL_1"
202
+ },
203
+ "image_size": 224,
204
+ "initializer_factor": 1.0,
205
+ "initializer_range": 1e-10,
206
+ "intermediate_size": 6144,
207
+ "is_decoder": false,
208
+ "is_encoder_decoder": false,
209
+ "label2id": {
210
+ "LABEL_0": 0,
211
+ "LABEL_1": 1
212
+ },
213
+ "layer_norm_eps": 1e-6,
214
+ "length_penalty": 1.0,
215
+ "max_length": 20,
216
+ "min_length": 0,
217
+ "model_type": "blip_2_vision_model",
218
+ "no_repeat_ngram_size": 0,
219
+ "num_attention_heads": 16,
220
+ "num_beam_groups": 1,
221
+ "num_beams": 1,
222
+ "num_channels": 3,
223
+ "num_hidden_layers": 39,
224
+ "num_return_sequences": 1,
225
+ "output_attentions": false,
226
+ "output_hidden_states": false,
227
+ "output_scores": false,
228
+ "pad_token_id": null,
229
+ "patch_size": 14,
230
+ "prefix": null,
231
+ "problem_type": null,
232
+ "projection_dim": 512,
233
+ "pruned_heads": {},
234
+ "qkv_bias": true,
235
+ "remove_invalid_values": false,
236
+ "repetition_penalty": 1.0,
237
+ "return_dict": true,
238
+ "return_dict_in_generate": false,
239
+ "sep_token_id": null,
240
+ "suppress_tokens": null,
241
+ "task_specific_params": null,
242
+ "temperature": 1.0,
243
+ "tf_legacy_loss": false,
244
+ "tie_encoder_decoder": false,
245
+ "tie_word_embeddings": true,
246
+ "tokenizer_class": null,
247
+ "top_k": 50,
248
+ "top_p": 1.0,
249
+ "torch_dtype": null,
250
+ "torchscript": false,
251
+ "transformers_version": "4.27.0.dev0",
252
+ "typical_p": 1.0,
253
+ "use_bfloat16": false
254
+ }
255
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
preprocessor_config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_convert_rgb": true,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.48145466,
8
+ 0.4578275,
9
+ 0.40821073
10
+ ],
11
+ "image_processor_type": "BlipImageProcessor",
12
+ "image_std": [
13
+ 0.26862954,
14
+ 0.26130258,
15
+ 0.27577711
16
+ ],
17
+ "processor_class": "Blip2Processor",
18
+ "resample": 3,
19
+ "rescale_factor": 0.00392156862745098,
20
+ "size": {
21
+ "height": 224,
22
+ "width": 224
23
+ }
24
+ }
pytorch_model-00001-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:83f4604e9f2c81dace48cbbb245cbe9acadddce7471c17eedc10cd675bf9af62
3
+ size 9996239804
pytorch_model-00002-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b224ac0c148bf3aa0a211e5d043d38918ef57c2d3b714771a7c4b124129dbd48
3
+ size 5497724774
pytorch_model.bin.index.json ADDED
The diff for this file is too large to render. See raw diff
 
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "</s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<pad>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "</s>",
25
+ "lstrip": false,
26
+ "normalized": true,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_prefix_space": false,
4
+ "bos_token": {
5
+ "__type": "AddedToken",
6
+ "content": "</s>",
7
+ "lstrip": false,
8
+ "normalized": true,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "eos_token": {
13
+ "__type": "AddedToken",
14
+ "content": "</s>",
15
+ "lstrip": false,
16
+ "normalized": true,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ },
20
+ "errors": "replace",
21
+ "model_max_length": 1000000000000000019884624838656,
22
+ "pad_token": {
23
+ "__type": "AddedToken",
24
+ "content": "<pad>",
25
+ "lstrip": false,
26
+ "normalized": true,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "processor_class": "Blip2Processor",
31
+ "special_tokens_map_file": null,
32
+ "tokenizer_class": "GPT2Tokenizer",
33
+ "unk_token": {
34
+ "__type": "AddedToken",
35
+ "content": "</s>",
36
+ "lstrip": false,
37
+ "normalized": true,
38
+ "rstrip": false,
39
+ "single_word": false
40
+ }
41
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff