adyprat commited on
Commit
b60f790
1 Parent(s): 50da2ef

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v3
16
+ type: PandaReachDense-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.22 +/- 0.13
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d5163fec54c140abcdefd7f8a326d54ee2549b988abfbbbeffa4f52db527f4b5
3
+ size 106951
a2c-PandaReachDense-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaReachDense-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f645d5408b0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f645d536180>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1694369848432199602,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAIAVlv70Amr/9h7G/YHWQPiRXsjrQZeg+gsC9vqhU4L5tgZM/es3kP6lu3L/qbmW/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAIRmVvgC5F79rqZy/Hpe0vk/hkT9rg1c/LSfNvAvmiL7hkNY/KU3XP0XMh79IiCU/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAgBWW/vQCav/2Hsb9rQke/BCeuvh9/bb9gdZA+JFeyOtBl6D6DCvI+Cupwu7uewT6CwL2+qFTgvm2Bkz9+j/8+FKXHPnhx+T96zeQ/qW7cv+puZb8LWU4/GytTP9UcLb6UaA5LBEsGhpRoEnSUUpR1Lg==",
33
+ "achieved_goal": "[[-8.9460945e-01 -1.2031475e+00 -1.3869625e+00]\n [ 2.8214550e-01 1.3606292e-03 4.5390177e-01]\n [-3.7060934e-01 -4.3814588e-01 1.1523873e+00]\n [ 1.7875206e+00 -1.7221271e+00 -8.9622366e-01]]",
34
+ "desired_goal": "[[-0.29120734 -0.5926666 -1.2239202 ]\n [-0.35271543 1.1396884 0.841849 ]\n [-0.02504309 -0.2673801 1.6762964 ]\n [ 1.6820422 -1.0609213 0.64661074]]",
35
+ "observation": "[[-8.9460945e-01 -1.2031475e+00 -1.3869625e+00 -7.7835721e-01\n -3.4014142e-01 -9.2772096e-01]\n [ 2.8214550e-01 1.3606292e-03 4.5390177e-01 4.7273645e-01\n -3.6760592e-03 3.7816414e-01]\n [-3.7060934e-01 -4.3814588e-01 1.1523873e+00 4.9914163e-01\n 3.8993132e-01 1.9487753e+00]\n [ 1.7875206e+00 -1.7221271e+00 -8.9622366e-01 8.0604619e-01\n 8.2487649e-01 -1.6905530e-01]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAApFAIvm0+B762ZoY+DHEdvQUBwT1YjZA+NMkFvh425r2CCI0+NywUPp8JFr54abU9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
44
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
45
+ "desired_goal": "[[-0.13312012 -0.13207407 0.26250237]\n [-0.03843789 0.09424023 0.28232837]\n [-0.13065034 -0.11240791 0.27545553]\n [ 0.14469992 -0.14652108 0.08858007]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9R0IToMa0iMAWyUSwSMAXSUR0CmWpJ4rz5HdX2UKGgGR7+2vcJtzjm0aAdLAmgIR0CmWvFOwgTzdX2UKGgGR7/VoW56MR6GaAdLA2gIR0CmW6MXrMTwdX2UKGgGR7/S9B8hLXcyaAdLA2gIR0CmW1EX+ERKdX2UKGgGR7/Bollbu+h5aAdLAmgIR0CmW2MX7+DOdX2UKGgGR7/QBj4HoouxaAdLA2gIR0CmWwvAXVLBdX2UKGgGR7/Sw+dK/VRUaAdLBGgIR0CmWrSrYGt7dX2UKGgGR7/YiX6ZYxL1aAdLA2gIR0CmW7580DU3dX2UKGgGR7+yTV2A5JbuaAdLAmgIR0CmW3PtD2J0dX2UKGgGR7/AEMb3oLXuaAdLAmgIR0CmWsU2kzoEdX2UKGgGR7/SSH/LkjoqaAdLA2gIR0CmWyTasZHedX2UKGgGR7/LLBbfP5YYaAdLA2gIR0CmW9nWz4UOdX2UKGgGR7+zHbRF7UobaAdLAmgIR0CmWte5e7cxdX2UKGgGR7/euaF23azvaAdLBGgIR0CmW5VRLsa9dX2UKGgGR7/THbh3qzJIaAdLBGgIR0CmW0QHAymAdX2UKGgGR7/QpN9H+ZPVaAdLA2gIR0CmWuz4k/r0dX2UKGgGR7/T/ViF0xM4aAdLBGgIR0CmW/ay0KJEdX2UKGgGR7/KmO2iL2pRaAdLA2gIR0CmW67VSXMRdX2UKGgGR7/Kplz2exwAaAdLA2gIR0CmW16XKKYRdX2UKGgGR7/GpEx7AtWdaAdLA2gIR0CmWwchTwUhdX2UKGgGR7/H8LronrpraAdLA2gIR0CmXBEZiuuBdX2UKGgGR7+pAlfJFLFoaAdLAWgIR0CmWw+iBXjmdX2UKGgGR7/XD7655JK8aAdLBGgIR0CmW89OZb6hdX2UKGgGR7/UxZ+x4Y78aAdLA2gIR0CmW3gBcRlIdX2UKGgGR7/Q5tFa0QbuaAdLA2gIR0CmXC150KZ2dX2UKGgGR7/GCCBf8dgfaAdLA2gIR0CmWyu6d1+zdX2UKGgGR7/WlchTwUg0aAdLA2gIR0CmW+nq/ub7dX2UKGgGR7/R5uqFRHf/aAdLA2gIR0CmW5GEGqxUdX2UKGgGR7/Q/qPfbblBaAdLA2gIR0CmWz3WWhRJdX2UKGgGR7/XQP7N0NjLaAdLBGgIR0CmXEar3j+8dX2UKGgGR7/Of8MuvlltaAdLA2gIR0CmW6GQSzw+dX2UKGgGR7/Q2Q4jrzGxaAdLA2gIR0CmW03okiUxdX2UKGgGR7/IDU3GXHBDaAdLA2gIR0CmXFZdGAkLdX2UKGgGR7/M//Nqxkd4aAdLA2gIR0CmW67JfYz0dX2UKGgGR7/Ovs7dSEUTaAdLA2gIR0CmW1q7AckudX2UKGgGR7/JaHsTnJT3aAdLA2gIR0CmXGWV3Ux3dX2UKGgGR7/EedTYNAkcaAdLAmgIR0CmW7oaLn9vdX2UKGgGR7/nP2GqPwNLaAdLCWgIR0CmXBjHfdhzdX2UKGgGR7+ye7L+xW1daAdLAmgIR0CmW8fYraufdX2UKGgGR7/E68QI2OyWaAdLA2gIR0CmW2/zBhx6dX2UKGgGR7/LhOP/7zkIaAdLA2gIR0CmXHiYTj//dX2UKGgGR7/TNg0CRwIdaAdLA2gIR0CmXClYMfA9dX2UKGgGR7+xXcQAdXDFaAdLAmgIR0CmXINJnQIEdX2UKGgGR7/VlijL0SRKaAdLBGgIR0CmW9wRf4RFdX2UKGgGR7/hPp6hQFcIaAdLBGgIR0CmW4Pfj0cwdX2UKGgGR7/T24NI9TxYaAdLA2gIR0CmXJFum78OdX2UKGgGR7/Pjin5zo2XaAdLBGgIR0CmXD7dSEUTdX2UKGgGR7/RQdjoZAIIaAdLA2gIR0CmW+w3HaN/dX2UKGgGR7/SNaQmu1WsaAdLA2gIR0CmW5QTM7lrdX2UKGgGR7/RbiIcinpCaAdLA2gIR0CmXKLYf4h2dX2UKGgGR7/QZNwiqyWzaAdLA2gIR0CmXE/CyhSMdX2UKGgGR7+044p+c6NmaAdLAmgIR0CmW57n5i3HdX2UKGgGR7/VqX4TK1XvaAdLBGgIR0CmW//YraufdX2UKGgGR7/NA3T/hl19aAdLA2gIR0CmXLGe+VTrdX2UKGgGR7/ZdGiHqNZNaAdLBGgIR0CmXGkzGgjAdX2UKGgGR7/awR5C4SYgaAdLBGgIR0CmW7m/nGKidX2UKGgGR7+QxrSE12q2aAdLAWgIR0CmXHC/fwZwdX2UKGgGR7/ORh+fAbhnaAdLA2gIR0CmXBj2alUIdX2UKGgGR7/R0VJtix3WaAdLA2gIR0CmXMlQVKwqdX2UKGgGR7/FYPoV2zOYaAdLAmgIR0CmW8UGNaQndX2UKGgGR7+64I8hcJMQaAdLAmgIR0CmXCFVcUuddX2UKGgGR7/ASX+l0o0AaAdLAmgIR0CmXNEQPI4mdX2UKGgGR7/KI2OyVv/BaAdLA2gIR0CmXH4aYNRWdX2UKGgGR7/a/bCaZx7zaAdLBGgIR0CmW9d4NZvDdX2UKGgGR7/SIU8FINExaAdLA2gIR0CmXN/vnbItdX2UKGgGR7/JfvWpZOi4aAdLA2gIR0CmXIzd+G47dX2UKGgGR7/WWMS9M9KVaAdLBGgIR0CmXDRt52QodX2UKGgGR7+MkD6nBLwnaAdLAWgIR0CmW9wjt5UtdX2UKGgGR7/UnW8RL9MsaAdLA2gIR0CmXO3Dej20dX2UKGgGR7/SDDjzZpSKaAdLA2gIR0CmXEJiqhlEdX2UKGgGR7/SkMTewcHXaAdLA2gIR0CmW+oPbwjMdX2UKGgGR7/bQYDTz/ZNaAdLBGgIR0CmXJ+IMz/IdX2UKGgGR7+n5ULlV94NaAdLAWgIR0CmXEb1Iy0sdX2UKGgGR7+oS39aUzKtaAdLAWgIR0CmW+6aCtihdX2UKGgGR7+5WaMJhOQAaAdLAmgIR0CmXPcGcFyJdX2UKGgGR7+cSf16E8JVaAdLAWgIR0CmW/Kp1ie/dX2UKGgGR7+5ndweeWfLaAdLAmgIR0CmXP+bNKRMdX2UKGgGR7/I4xUNrj5saAdLA2gIR0CmXKxzzVc2dX2UKGgGR7/RQhOgxrSFaAdLA2gIR0CmXFPttyggdX2UKGgGR7/ARUWEbo8qaAdLAmgIR0CmW/unEVFhdX2UKGgGR7+7pQk5ZKWcaAdLAmgIR0CmXAYEOiFkdX2UKGgGR7/TnF5v99+gaAdLA2gIR0CmXQ76YVqOdX2UKGgGR7/PziCJ40MxaAdLA2gIR0CmXLvhZQpGdX2UKGgGR7/KmAskIHC5aAdLA2gIR0CmXGNlRP43dX2UKGgGR7+i3XqZ+hGpaAdLAWgIR0CmXAshPj4pdX2UKGgGR7/RbExZdOZcaAdLA2gIR0CmXR4j0L+hdX2UKGgGR7/TUrCm/FisaAdLA2gIR0CmXMsGxD9gdX2UKGgGR7/R1Z1V5rxiaAdLA2gIR0CmXBtFrl/6dX2UKGgGR7+h8+iaiKziaAdLAWgIR0CmXSPJA+pwdX2UKGgGR7/bzN2TxG2DaAdLBGgIR0CmXHgMc6vJdX2UKGgGR7+YbOu7pV0caAdLAWgIR0CmXSfLLZBcdX2UKGgGR7/BLV4HHFP0aAdLAmgIR0CmXCNfw7T2dX2UKGgGR7/Q1k1/DtPYaAdLA2gIR0CmXNjzI3irdX2UKGgGR7+6ETQE6kqMaAdLAmgIR0CmXTCfpUxVdX2UKGgGR7/RqIJqqOtGaAdLA2gIR0CmXIT4cm0FdX2UKGgGR7/SnfEXLvCuaAdLA2gIR0CmXDJq7AcldX2UKGgGR7/OYu01IiC8aAdLA2gIR0CmXT7AtWdVdX2UKGgGR7/clfqoqCpWaAdLBGgIR0CmXOw2l2vCdX2UKGgGR7/Hsv7FbVz7aAdLA2gIR0CmXJPRRdhRdX2UKGgGR7/DB2wFC9h7aAdLAmgIR0CmXPQb2lEadWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 50000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True]",
82
+ "bounded_above": "[ True True True]",
83
+ "_shape": [
84
+ 3
85
+ ],
86
+ "low": "[-1. -1. -1.]",
87
+ "high": "[1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaReachDense-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2c01c13e6bdf71f40c1728c206ac25dd7b7d43c97a82713ca609f0322f1429c9
3
+ size 44734
a2c-PandaReachDense-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42652301b9d0555a628e7ad65a68a82ece3ee838f8ccd977329c7fac6c6ed0df
3
+ size 46014
a2c-PandaReachDense-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f645d5408b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f645d536180>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1694369848432199602, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAIAVlv70Amr/9h7G/YHWQPiRXsjrQZeg+gsC9vqhU4L5tgZM/es3kP6lu3L/qbmW/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAIRmVvgC5F79rqZy/Hpe0vk/hkT9rg1c/LSfNvAvmiL7hkNY/KU3XP0XMh79IiCU/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAgBWW/vQCav/2Hsb9rQke/BCeuvh9/bb9gdZA+JFeyOtBl6D6DCvI+Cupwu7uewT6CwL2+qFTgvm2Bkz9+j/8+FKXHPnhx+T96zeQ/qW7cv+puZb8LWU4/GytTP9UcLb6UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-8.9460945e-01 -1.2031475e+00 -1.3869625e+00]\n [ 2.8214550e-01 1.3606292e-03 4.5390177e-01]\n [-3.7060934e-01 -4.3814588e-01 1.1523873e+00]\n [ 1.7875206e+00 -1.7221271e+00 -8.9622366e-01]]", "desired_goal": "[[-0.29120734 -0.5926666 -1.2239202 ]\n [-0.35271543 1.1396884 0.841849 ]\n [-0.02504309 -0.2673801 1.6762964 ]\n [ 1.6820422 -1.0609213 0.64661074]]", "observation": "[[-8.9460945e-01 -1.2031475e+00 -1.3869625e+00 -7.7835721e-01\n -3.4014142e-01 -9.2772096e-01]\n [ 2.8214550e-01 1.3606292e-03 4.5390177e-01 4.7273645e-01\n -3.6760592e-03 3.7816414e-01]\n [-3.7060934e-01 -4.3814588e-01 1.1523873e+00 4.9914163e-01\n 3.8993132e-01 1.9487753e+00]\n [ 1.7875206e+00 -1.7221271e+00 -8.9622366e-01 8.0604619e-01\n 8.2487649e-01 -1.6905530e-01]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAApFAIvm0+B762ZoY+DHEdvQUBwT1YjZA+NMkFvh425r2CCI0+NywUPp8JFr54abU9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.13312012 -0.13207407 0.26250237]\n [-0.03843789 0.09424023 0.28232837]\n [-0.13065034 -0.11240791 0.27545553]\n [ 0.14469992 -0.14652108 0.08858007]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9R0IToMa0iMAWyUSwSMAXSUR0CmWpJ4rz5HdX2UKGgGR7+2vcJtzjm0aAdLAmgIR0CmWvFOwgTzdX2UKGgGR7/VoW56MR6GaAdLA2gIR0CmW6MXrMTwdX2UKGgGR7/S9B8hLXcyaAdLA2gIR0CmW1EX+ERKdX2UKGgGR7/Bollbu+h5aAdLAmgIR0CmW2MX7+DOdX2UKGgGR7/QBj4HoouxaAdLA2gIR0CmWwvAXVLBdX2UKGgGR7/Sw+dK/VRUaAdLBGgIR0CmWrSrYGt7dX2UKGgGR7/YiX6ZYxL1aAdLA2gIR0CmW7580DU3dX2UKGgGR7+yTV2A5JbuaAdLAmgIR0CmW3PtD2J0dX2UKGgGR7/AEMb3oLXuaAdLAmgIR0CmWsU2kzoEdX2UKGgGR7/SSH/LkjoqaAdLA2gIR0CmWyTasZHedX2UKGgGR7/LLBbfP5YYaAdLA2gIR0CmW9nWz4UOdX2UKGgGR7+zHbRF7UobaAdLAmgIR0CmWte5e7cxdX2UKGgGR7/euaF23azvaAdLBGgIR0CmW5VRLsa9dX2UKGgGR7/THbh3qzJIaAdLBGgIR0CmW0QHAymAdX2UKGgGR7/QpN9H+ZPVaAdLA2gIR0CmWuz4k/r0dX2UKGgGR7/T/ViF0xM4aAdLBGgIR0CmW/ay0KJEdX2UKGgGR7/KmO2iL2pRaAdLA2gIR0CmW67VSXMRdX2UKGgGR7/Kplz2exwAaAdLA2gIR0CmW16XKKYRdX2UKGgGR7/GpEx7AtWdaAdLA2gIR0CmWwchTwUhdX2UKGgGR7/H8LronrpraAdLA2gIR0CmXBEZiuuBdX2UKGgGR7+pAlfJFLFoaAdLAWgIR0CmWw+iBXjmdX2UKGgGR7/XD7655JK8aAdLBGgIR0CmW89OZb6hdX2UKGgGR7/UxZ+x4Y78aAdLA2gIR0CmW3gBcRlIdX2UKGgGR7/Q5tFa0QbuaAdLA2gIR0CmXC150KZ2dX2UKGgGR7/GCCBf8dgfaAdLA2gIR0CmWyu6d1+zdX2UKGgGR7/WlchTwUg0aAdLA2gIR0CmW+nq/ub7dX2UKGgGR7/R5uqFRHf/aAdLA2gIR0CmW5GEGqxUdX2UKGgGR7/Q/qPfbblBaAdLA2gIR0CmWz3WWhRJdX2UKGgGR7/XQP7N0NjLaAdLBGgIR0CmXEar3j+8dX2UKGgGR7/Of8MuvlltaAdLA2gIR0CmW6GQSzw+dX2UKGgGR7/Q2Q4jrzGxaAdLA2gIR0CmW03okiUxdX2UKGgGR7/IDU3GXHBDaAdLA2gIR0CmXFZdGAkLdX2UKGgGR7/M//Nqxkd4aAdLA2gIR0CmW67JfYz0dX2UKGgGR7/Ovs7dSEUTaAdLA2gIR0CmW1q7AckudX2UKGgGR7/JaHsTnJT3aAdLA2gIR0CmXGWV3Ux3dX2UKGgGR7/EedTYNAkcaAdLAmgIR0CmW7oaLn9vdX2UKGgGR7/nP2GqPwNLaAdLCWgIR0CmXBjHfdhzdX2UKGgGR7+ye7L+xW1daAdLAmgIR0CmW8fYraufdX2UKGgGR7/E68QI2OyWaAdLA2gIR0CmW2/zBhx6dX2UKGgGR7/LhOP/7zkIaAdLA2gIR0CmXHiYTj//dX2UKGgGR7/TNg0CRwIdaAdLA2gIR0CmXClYMfA9dX2UKGgGR7+xXcQAdXDFaAdLAmgIR0CmXINJnQIEdX2UKGgGR7/VlijL0SRKaAdLBGgIR0CmW9wRf4RFdX2UKGgGR7/hPp6hQFcIaAdLBGgIR0CmW4Pfj0cwdX2UKGgGR7/T24NI9TxYaAdLA2gIR0CmXJFum78OdX2UKGgGR7/Pjin5zo2XaAdLBGgIR0CmXD7dSEUTdX2UKGgGR7/RQdjoZAIIaAdLA2gIR0CmW+w3HaN/dX2UKGgGR7/SNaQmu1WsaAdLA2gIR0CmW5QTM7lrdX2UKGgGR7/RbiIcinpCaAdLA2gIR0CmXKLYf4h2dX2UKGgGR7/QZNwiqyWzaAdLA2gIR0CmXE/CyhSMdX2UKGgGR7+044p+c6NmaAdLAmgIR0CmW57n5i3HdX2UKGgGR7/VqX4TK1XvaAdLBGgIR0CmW//YraufdX2UKGgGR7/NA3T/hl19aAdLA2gIR0CmXLGe+VTrdX2UKGgGR7/ZdGiHqNZNaAdLBGgIR0CmXGkzGgjAdX2UKGgGR7/awR5C4SYgaAdLBGgIR0CmW7m/nGKidX2UKGgGR7+QxrSE12q2aAdLAWgIR0CmXHC/fwZwdX2UKGgGR7/ORh+fAbhnaAdLA2gIR0CmXBj2alUIdX2UKGgGR7/R0VJtix3WaAdLA2gIR0CmXMlQVKwqdX2UKGgGR7/FYPoV2zOYaAdLAmgIR0CmW8UGNaQndX2UKGgGR7+64I8hcJMQaAdLAmgIR0CmXCFVcUuddX2UKGgGR7/ASX+l0o0AaAdLAmgIR0CmXNEQPI4mdX2UKGgGR7/KI2OyVv/BaAdLA2gIR0CmXH4aYNRWdX2UKGgGR7/a/bCaZx7zaAdLBGgIR0CmW9d4NZvDdX2UKGgGR7/SIU8FINExaAdLA2gIR0CmXN/vnbItdX2UKGgGR7/JfvWpZOi4aAdLA2gIR0CmXIzd+G47dX2UKGgGR7/WWMS9M9KVaAdLBGgIR0CmXDRt52QodX2UKGgGR7+MkD6nBLwnaAdLAWgIR0CmW9wjt5UtdX2UKGgGR7/UnW8RL9MsaAdLA2gIR0CmXO3Dej20dX2UKGgGR7/SDDjzZpSKaAdLA2gIR0CmXEJiqhlEdX2UKGgGR7/SkMTewcHXaAdLA2gIR0CmW+oPbwjMdX2UKGgGR7/bQYDTz/ZNaAdLBGgIR0CmXJ+IMz/IdX2UKGgGR7+n5ULlV94NaAdLAWgIR0CmXEb1Iy0sdX2UKGgGR7+oS39aUzKtaAdLAWgIR0CmW+6aCtihdX2UKGgGR7+5WaMJhOQAaAdLAmgIR0CmXPcGcFyJdX2UKGgGR7+cSf16E8JVaAdLAWgIR0CmW/Kp1ie/dX2UKGgGR7+5ndweeWfLaAdLAmgIR0CmXP+bNKRMdX2UKGgGR7/I4xUNrj5saAdLA2gIR0CmXKxzzVc2dX2UKGgGR7/RQhOgxrSFaAdLA2gIR0CmXFPttyggdX2UKGgGR7/ARUWEbo8qaAdLAmgIR0CmW/unEVFhdX2UKGgGR7+7pQk5ZKWcaAdLAmgIR0CmXAYEOiFkdX2UKGgGR7/TnF5v99+gaAdLA2gIR0CmXQ76YVqOdX2UKGgGR7/PziCJ40MxaAdLA2gIR0CmXLvhZQpGdX2UKGgGR7/KmAskIHC5aAdLA2gIR0CmXGNlRP43dX2UKGgGR7+i3XqZ+hGpaAdLAWgIR0CmXAshPj4pdX2UKGgGR7/RbExZdOZcaAdLA2gIR0CmXR4j0L+hdX2UKGgGR7/TUrCm/FisaAdLA2gIR0CmXMsGxD9gdX2UKGgGR7/R1Z1V5rxiaAdLA2gIR0CmXBtFrl/6dX2UKGgGR7+h8+iaiKziaAdLAWgIR0CmXSPJA+pwdX2UKGgGR7/bzN2TxG2DaAdLBGgIR0CmXHgMc6vJdX2UKGgGR7+YbOu7pV0caAdLAWgIR0CmXSfLLZBcdX2UKGgGR7/BLV4HHFP0aAdLAmgIR0CmXCNfw7T2dX2UKGgGR7/Q1k1/DtPYaAdLA2gIR0CmXNjzI3irdX2UKGgGR7+6ETQE6kqMaAdLAmgIR0CmXTCfpUxVdX2UKGgGR7/RqIJqqOtGaAdLA2gIR0CmXIT4cm0FdX2UKGgGR7/SnfEXLvCuaAdLA2gIR0CmXDJq7AcldX2UKGgGR7/OYu01IiC8aAdLA2gIR0CmXT7AtWdVdX2UKGgGR7/clfqoqCpWaAdLBGgIR0CmXOw2l2vCdX2UKGgGR7/Hsv7FbVz7aAdLA2gIR0CmXJPRRdhRdX2UKGgGR7/DB2wFC9h7aAdLAmgIR0CmXPQb2lEadWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (653 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.21645713122561575, "std_reward": 0.13061110401912254, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-10T19:04:49.649598"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db4c4da60912e7c8e06b6a246790fdf7d743069f83dfff1f2d69d5db7e58de1f
3
+ size 2623