File size: 2,024 Bytes
e60ec5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: summerschool-1layer-distill-irony
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# summerschool-1layer-distill-irony

This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6811
- Accuracy: 0.5226

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 0.5919        | 0.1776 | 100  | 0.5602          | 0.718    |
| 0.5094        | 0.3552 | 200  | 0.5458          | 0.722    |
| 0.458         | 0.5329 | 300  | 0.5431          | 0.758    |
| 0.4826        | 0.7105 | 400  | 0.5628          | 0.758    |
| 0.4127        | 0.8881 | 500  | 0.5009          | 0.751    |
| 0.3931        | 1.0657 | 600  | 0.5868          | 0.751    |
| 0.287         | 1.2433 | 700  | 0.6045          | 0.767    |
| 0.262         | 1.4210 | 800  | 0.5380          | 0.771    |
| 0.2592        | 1.5986 | 900  | 0.5837          | 0.779    |
| 0.2711        | 1.7762 | 1000 | 0.5107          | 0.782    |
| 0.276         | 1.9538 | 1100 | 0.4911          | 0.796    |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1