End of training
Browse files
README.md
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: llama2
|
3 |
+
base_model: TheBloke/vigogne-2-70B-chat-GPTQ
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
model-index:
|
7 |
+
- name: Vigogne70b-fans
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# Vigogne70b-fans
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [TheBloke/vigogne-2-70B-chat-GPTQ](https://huggingface.co/TheBloke/vigogne-2-70B-chat-GPTQ) on an unknown dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.9593
|
19 |
+
|
20 |
+
## Model description
|
21 |
+
|
22 |
+
More information needed
|
23 |
+
|
24 |
+
## Intended uses & limitations
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Training and evaluation data
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training procedure
|
33 |
+
|
34 |
+
### Training hyperparameters
|
35 |
+
|
36 |
+
The following hyperparameters were used during training:
|
37 |
+
- learning_rate: 0.0004
|
38 |
+
- train_batch_size: 1
|
39 |
+
- eval_batch_size: 1
|
40 |
+
- seed: 42
|
41 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
42 |
+
- lr_scheduler_type: linear
|
43 |
+
- lr_scheduler_warmup_steps: 2
|
44 |
+
- training_steps: 200
|
45 |
+
- mixed_precision_training: Native AMP
|
46 |
+
|
47 |
+
### Training results
|
48 |
+
|
49 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
50 |
+
|:-------------:|:-----:|:----:|:---------------:|
|
51 |
+
| 1.9503 | 0.02 | 10 | 1.6354 |
|
52 |
+
| 1.2959 | 0.04 | 20 | 1.2117 |
|
53 |
+
| 1.2316 | 0.07 | 30 | 1.1256 |
|
54 |
+
| 1.1742 | 0.09 | 40 | 1.0960 |
|
55 |
+
| 1.1643 | 0.11 | 50 | 1.0677 |
|
56 |
+
| 1.0667 | 0.13 | 60 | 1.0449 |
|
57 |
+
| 1.0232 | 0.15 | 70 | 1.0391 |
|
58 |
+
| 0.9864 | 0.17 | 80 | 1.0272 |
|
59 |
+
| 1.0588 | 0.2 | 90 | 1.0206 |
|
60 |
+
| 0.906 | 0.22 | 100 | 1.0020 |
|
61 |
+
| 1.098 | 0.24 | 110 | 0.9979 |
|
62 |
+
| 0.9973 | 0.26 | 120 | 0.9883 |
|
63 |
+
| 0.9999 | 0.28 | 130 | 1.0002 |
|
64 |
+
| 1.121 | 0.31 | 140 | 0.9752 |
|
65 |
+
| 0.9726 | 0.33 | 150 | 0.9722 |
|
66 |
+
| 1.015 | 0.35 | 160 | 0.9680 |
|
67 |
+
| 0.8247 | 0.37 | 170 | 0.9664 |
|
68 |
+
| 0.823 | 0.39 | 180 | 0.9613 |
|
69 |
+
| 0.8921 | 0.41 | 190 | 0.9607 |
|
70 |
+
| 1.0024 | 0.44 | 200 | 0.9593 |
|
71 |
+
|
72 |
+
|
73 |
+
### Framework versions
|
74 |
+
|
75 |
+
- Transformers 4.35.2
|
76 |
+
- Pytorch 2.1.0+cu118
|
77 |
+
- Datasets 2.15.0
|
78 |
+
- Tokenizers 0.15.0
|