affecto commited on
Commit
49128d8
1 Parent(s): d949fee

End of training

Browse files
Files changed (1) hide show
  1. README.md +78 -0
README.md ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: llama2
3
+ base_model: TheBloke/vigogne-2-70B-chat-GPTQ
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: Vigogne70b-fans
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # Vigogne70b-fans
15
+
16
+ This model is a fine-tuned version of [TheBloke/vigogne-2-70B-chat-GPTQ](https://huggingface.co/TheBloke/vigogne-2-70B-chat-GPTQ) on an unknown dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.9593
19
+
20
+ ## Model description
21
+
22
+ More information needed
23
+
24
+ ## Intended uses & limitations
25
+
26
+ More information needed
27
+
28
+ ## Training and evaluation data
29
+
30
+ More information needed
31
+
32
+ ## Training procedure
33
+
34
+ ### Training hyperparameters
35
+
36
+ The following hyperparameters were used during training:
37
+ - learning_rate: 0.0004
38
+ - train_batch_size: 1
39
+ - eval_batch_size: 1
40
+ - seed: 42
41
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
42
+ - lr_scheduler_type: linear
43
+ - lr_scheduler_warmup_steps: 2
44
+ - training_steps: 200
45
+ - mixed_precision_training: Native AMP
46
+
47
+ ### Training results
48
+
49
+ | Training Loss | Epoch | Step | Validation Loss |
50
+ |:-------------:|:-----:|:----:|:---------------:|
51
+ | 1.9503 | 0.02 | 10 | 1.6354 |
52
+ | 1.2959 | 0.04 | 20 | 1.2117 |
53
+ | 1.2316 | 0.07 | 30 | 1.1256 |
54
+ | 1.1742 | 0.09 | 40 | 1.0960 |
55
+ | 1.1643 | 0.11 | 50 | 1.0677 |
56
+ | 1.0667 | 0.13 | 60 | 1.0449 |
57
+ | 1.0232 | 0.15 | 70 | 1.0391 |
58
+ | 0.9864 | 0.17 | 80 | 1.0272 |
59
+ | 1.0588 | 0.2 | 90 | 1.0206 |
60
+ | 0.906 | 0.22 | 100 | 1.0020 |
61
+ | 1.098 | 0.24 | 110 | 0.9979 |
62
+ | 0.9973 | 0.26 | 120 | 0.9883 |
63
+ | 0.9999 | 0.28 | 130 | 1.0002 |
64
+ | 1.121 | 0.31 | 140 | 0.9752 |
65
+ | 0.9726 | 0.33 | 150 | 0.9722 |
66
+ | 1.015 | 0.35 | 160 | 0.9680 |
67
+ | 0.8247 | 0.37 | 170 | 0.9664 |
68
+ | 0.823 | 0.39 | 180 | 0.9613 |
69
+ | 0.8921 | 0.41 | 190 | 0.9607 |
70
+ | 1.0024 | 0.44 | 200 | 0.9593 |
71
+
72
+
73
+ ### Framework versions
74
+
75
+ - Transformers 4.35.2
76
+ - Pytorch 2.1.0+cu118
77
+ - Datasets 2.15.0
78
+ - Tokenizers 0.15.0