|
|
|
from transformers import PretrainedConfig ,PreTrainedTokenizer |
|
|
|
class OBIConfig(PretrainedConfig): |
|
def __init__(self, |
|
model_type="OBILanguageModel", |
|
auto_map={ |
|
"AutoConfig": "modelConfig.OBIConfig", |
|
"AutoModel": "modelLM.OBILanguageModel", |
|
"AutoModelForCausalLM": "modelLM.OBILanguageModel", |
|
"AutoModelForQuestionAnswering": "modelLM.OBILanguageModel" |
|
}, |
|
vocab_size=1000, |
|
hidden_size=4, |
|
num_attention_heads=2, |
|
num_hidden_layers=2, |
|
hidden_dropout_prob=0.1, |
|
block_size=100, |
|
batch_size=60, |
|
max_iters=200, |
|
eval_interval=100, |
|
learning_rate=0.001, |
|
device="cpu", |
|
**kwargs |
|
)->None: |
|
super().__init__(**kwargs) |
|
self.model_type = model_type |
|
self.auto_map = auto_map |
|
self.vocab_size = vocab_size |
|
self.hidden_size = hidden_size |
|
self.num_attention_heads = num_attention_heads |
|
self.num_hidden_layers = num_hidden_layers |
|
self.hidden_dropout_prob = hidden_dropout_prob |
|
self.block_size = block_size |
|
self.batch_size = batch_size |
|
self.max_iters = max_iters |
|
self.eval_interval = eval_interval |
|
self.learning_rate = learning_rate |
|
self.device = device |
|
|
|
|
|
|
|
|