from transformers import PretrainedConfig ,PreTrainedTokenizer class OBIConfig(PretrainedConfig): def __init__(self, model_type="OBILanguageModel", auto_map={ "AutoConfig": "modelConfig.OBIConfig", "AutoModel": "modelLM.OBILanguageModel", "AutoModelForCausalLM": "modelLM.OBILanguageModel", "AutoModelForQuestionAnswering": "modelLM.OBILanguageModel" }, vocab_size=1000, hidden_size=4, num_attention_heads=2, num_hidden_layers=2, hidden_dropout_prob=0.1, block_size=100, batch_size=60, max_iters=200, eval_interval=100, learning_rate=0.001, device="cpu", **kwargs )->None: super().__init__(**kwargs) self.model_type = model_type self.auto_map = auto_map self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_attention_heads = num_attention_heads self.num_hidden_layers = num_hidden_layers self.hidden_dropout_prob = hidden_dropout_prob self.block_size = block_size self.batch_size = batch_size self.max_iters = max_iters self.eval_interval = eval_interval self.learning_rate = learning_rate self.device = device