Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: nicholasKluge/Aira-2-1B1
|
3 |
+
co2_eq_emissions:
|
4 |
+
emissions: 1.78
|
5 |
+
geographical_location: United States of America
|
6 |
+
hardware_used: NVIDIA A100-SXM4-40GB
|
7 |
+
source: CodeCarbon
|
8 |
+
training_type: fine-tuning
|
9 |
+
datasets:
|
10 |
+
- nicholasKluge/instruct-aira-dataset
|
11 |
+
inference: false
|
12 |
+
language:
|
13 |
+
- en
|
14 |
+
library_name: transformers
|
15 |
+
license: apache-2.0
|
16 |
+
metrics:
|
17 |
+
- accuracy
|
18 |
+
model_creator: nicholasKluge
|
19 |
+
model_name: Aira-2-1B1
|
20 |
+
pipeline_tag: text-generation
|
21 |
+
quantized_by: afrideva
|
22 |
+
tags:
|
23 |
+
- alignment
|
24 |
+
- instruction tuned
|
25 |
+
- text generation
|
26 |
+
- conversation
|
27 |
+
- assistant
|
28 |
+
- gguf
|
29 |
+
- ggml
|
30 |
+
- quantized
|
31 |
+
- q2_k
|
32 |
+
- q3_k_m
|
33 |
+
- q4_k_m
|
34 |
+
- q5_k_m
|
35 |
+
- q6_k
|
36 |
+
- q8_0
|
37 |
+
widget:
|
38 |
+
- example_title: Greetings
|
39 |
+
text: <|startofinstruction|>How should I call you?<|endofinstruction|>
|
40 |
+
- example_title: Machine Learning
|
41 |
+
text: <|startofinstruction|>Can you explain what is Machine Learning?<|endofinstruction|>
|
42 |
+
- example_title: Ethics
|
43 |
+
text: <|startofinstruction|>Do you know anything about virtue ethics?<|endofinstruction|>
|
44 |
+
- example_title: Advise
|
45 |
+
text: <|startofinstruction|>How can I make my girlfriend happy?<|endofinstruction|>
|
46 |
+
---
|
47 |
+
# nicholasKluge/Aira-2-1B1-GGUF
|
48 |
+
|
49 |
+
Quantized GGUF model files for [Aira-2-1B1](https://huggingface.co/nicholasKluge/Aira-2-1B1) from [nicholasKluge](https://huggingface.co/nicholasKluge)
|
50 |
+
|
51 |
+
|
52 |
+
| Name | Quant method | Size |
|
53 |
+
| ---- | ---- | ---- |
|
54 |
+
| [aira-2-1b1.fp16.gguf](https://huggingface.co/afrideva/Aira-2-1B1-GGUF/resolve/main/aira-2-1b1.fp16.gguf) | fp16 | 2.20 GB |
|
55 |
+
| [aira-2-1b1.q2_k.gguf](https://huggingface.co/afrideva/Aira-2-1B1-GGUF/resolve/main/aira-2-1b1.q2_k.gguf) | q2_k | 482.15 MB |
|
56 |
+
| [aira-2-1b1.q3_k_m.gguf](https://huggingface.co/afrideva/Aira-2-1B1-GGUF/resolve/main/aira-2-1b1.q3_k_m.gguf) | q3_k_m | 549.86 MB |
|
57 |
+
| [aira-2-1b1.q4_k_m.gguf](https://huggingface.co/afrideva/Aira-2-1B1-GGUF/resolve/main/aira-2-1b1.q4_k_m.gguf) | q4_k_m | 667.83 MB |
|
58 |
+
| [aira-2-1b1.q5_k_m.gguf](https://huggingface.co/afrideva/Aira-2-1B1-GGUF/resolve/main/aira-2-1b1.q5_k_m.gguf) | q5_k_m | 782.06 MB |
|
59 |
+
| [aira-2-1b1.q6_k.gguf](https://huggingface.co/afrideva/Aira-2-1B1-GGUF/resolve/main/aira-2-1b1.q6_k.gguf) | q6_k | 903.43 MB |
|
60 |
+
| [aira-2-1b1.q8_0.gguf](https://huggingface.co/afrideva/Aira-2-1B1-GGUF/resolve/main/aira-2-1b1.q8_0.gguf) | q8_0 | 1.17 GB |
|
61 |
+
|
62 |
+
|
63 |
+
|
64 |
+
## Original Model Card:
|
65 |
+
# Aira-2-1B1
|
66 |
+
|
67 |
+
`Aira-2` is the second version of the Aira instruction-tuned series. `Aira-2-1B1` is an instruction-tuned GPT-style model based on [TinyLlama-1.1B](https://huggingface.co/PY007/TinyLlama-1.1B-intermediate-step-480k-1T). The model was trained with a dataset composed of prompts and completions generated synthetically by prompting already-tuned models (ChatGPT, Llama, Open-Assistant, etc).
|
68 |
+
|
69 |
+
Check our gradio-demo in [Spaces](https://huggingface.co/spaces/nicholasKluge/Aira-Demo).
|
70 |
+
|
71 |
+
## Details
|
72 |
+
|
73 |
+
- **Size:** 1,261,545,472 parameters
|
74 |
+
- **Dataset:** [Instruct-Aira Dataset](https://huggingface.co/datasets/nicholasKluge/instruct-aira-dataset)
|
75 |
+
- **Language:** English
|
76 |
+
- **Number of Epochs:** 3
|
77 |
+
- **Batch size:** 4
|
78 |
+
- **Optimizer:** `torch.optim.AdamW` (warmup_steps = 1e2, learning_rate = 5e-4, epsilon = 1e-8)
|
79 |
+
- **GPU:** 1 NVIDIA A100-SXM4-40GB
|
80 |
+
- **Emissions:** 1.78 KgCO2 (Singapore)
|
81 |
+
- **Total Energy Consumption:** 3.64 kWh
|
82 |
+
|
83 |
+
This repository has the [source code](https://github.com/Nkluge-correa/Aira) used to train this model.
|
84 |
+
|
85 |
+
## Usage
|
86 |
+
|
87 |
+
Three special tokens are used to mark the user side of the interaction and the model's response:
|
88 |
+
|
89 |
+
`<|startofinstruction|>`What is a language model?`<|endofinstruction|>`A language model is a probability distribution over a vocabulary.`<|endofcompletion|>`
|
90 |
+
|
91 |
+
```python
|
92 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
93 |
+
import torch
|
94 |
+
|
95 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
96 |
+
|
97 |
+
tokenizer = AutoTokenizer.from_pretrained('nicholasKluge/Aira-2-1B1')
|
98 |
+
aira = AutoModelForCausalLM.from_pretrained('nicholasKluge/Aira-2-1B1')
|
99 |
+
|
100 |
+
aira.eval()
|
101 |
+
aira.to(device)
|
102 |
+
|
103 |
+
question = input("Enter your question: ")
|
104 |
+
|
105 |
+
inputs = tokenizer(tokenizer.bos_token + question + tokenizer.sep_token, return_tensors="pt").to(device)
|
106 |
+
|
107 |
+
responses = aira.generate(**inputs,
|
108 |
+
bos_token_id=tokenizer.bos_token_id,
|
109 |
+
pad_token_id=tokenizer.pad_token_id,
|
110 |
+
eos_token_id=tokenizer.eos_token_id,
|
111 |
+
do_sample=True,
|
112 |
+
top_k=50,
|
113 |
+
max_length=500,
|
114 |
+
top_p=0.95,
|
115 |
+
temperature=0.7,
|
116 |
+
num_return_sequences=2)
|
117 |
+
|
118 |
+
print(f"Question: 👤 {question}\n")
|
119 |
+
|
120 |
+
for i, response in enumerate(responses):
|
121 |
+
print(f'Response {i+1}: 🤖 {tokenizer.decode(response, skip_special_tokens=True).replace(question, "")}')
|
122 |
+
```
|
123 |
+
|
124 |
+
The model will output something like:
|
125 |
+
|
126 |
+
```markdown
|
127 |
+
>>>Question: 👤 What is the capital of Brazil?
|
128 |
+
|
129 |
+
>>>Response 1: 🤖 The capital of Brazil is Brasília.
|
130 |
+
>>>Response 2: 🤖 The capital of Brazil is Brasília.
|
131 |
+
```
|
132 |
+
|
133 |
+
## Limitations
|
134 |
+
|
135 |
+
🤥 Generative models can perpetuate the generation of pseudo-informative content, that is, false information that may appear truthful.
|
136 |
+
|
137 |
+
🤬 In certain types of tasks, generative models can produce harmful and discriminatory content inspired by historical stereotypes.
|
138 |
+
|
139 |
+
## Evaluation
|
140 |
+
|
141 |
+
| Model (TinyLlama) | Average | [ARC](https://arxiv.org/abs/1803.05457) | [TruthfulQA](https://arxiv.org/abs/2109.07958) | [ToxiGen](https://arxiv.org/abs/2203.09509) |
|
142 |
+
|---------------------------------------------------------------|-----------|-----------------------------------------|------------------------------------------------|---------------------------------------------|
|
143 |
+
| [Aira-2-1B1](https://huggingface.co/nicholasKluge/Aira-2-1B1) | **42.55** | 25.26 | **50.81** | **51.59** |
|
144 |
+
| TinyLlama-1.1B-intermediate-step-480k-1T | 37.52 | **30.89** | 39.55 | 42.13 |
|
145 |
+
|
146 |
+
|
147 |
+
* Evaluations were performed using the [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) (by [EleutherAI](https://www.eleuther.ai/)).
|
148 |
+
|
149 |
+
## Cite as 🤗
|
150 |
+
|
151 |
+
```latex
|
152 |
+
|
153 |
+
@misc{nicholas22aira,
|
154 |
+
doi = {10.5281/zenodo.6989727},
|
155 |
+
url = {https://huggingface.co/nicholasKluge/Aira-2-1B1},
|
156 |
+
author = {Nicholas Kluge Corrêa},
|
157 |
+
title = {Aira},
|
158 |
+
year = {2023},
|
159 |
+
publisher = {HuggingFace},
|
160 |
+
journal = {HuggingFace repository},
|
161 |
+
}
|
162 |
+
|
163 |
+
```
|
164 |
+
|
165 |
+
## License
|
166 |
+
|
167 |
+
The `Aira-2-1B1` is licensed under the Apache License, Version 2.0. See the [LICENSE](LICENSE) file for more details.
|
168 |
+
|
169 |
+
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
|
170 |
+
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_nicholasKluge__Aira-2-1B1)
|
171 |
+
|
172 |
+
| Metric | Value |
|
173 |
+
|-----------------------|---------------------------|
|
174 |
+
| Avg. | 25.19 |
|
175 |
+
| ARC (25-shot) | 23.21 |
|
176 |
+
| HellaSwag (10-shot) | 26.97 |
|
177 |
+
| MMLU (5-shot) | 24.86 |
|
178 |
+
| TruthfulQA (0-shot) | 50.63 |
|
179 |
+
| Winogrande (5-shot) | 50.28 |
|
180 |
+
| GSM8K (5-shot) | 0.0 |
|
181 |
+
| DROP (3-shot) | 0.39 |
|