afrideva commited on
Commit
764a0fb
1 Parent(s): 555c0bd

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +382 -0
README.md ADDED
@@ -0,0 +1,382 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: nicholasKluge/TeenyTinyLlama-160m
3
+ co2_eq_emissions:
4
+ emissions: 5.6
5
+ geographical_location: Germany
6
+ hardware_used: NVIDIA A100-SXM4-40GB
7
+ source: CodeCarbon
8
+ training_type: pre-training
9
+ datasets:
10
+ - nicholasKluge/Pt-Corpus-Instruct
11
+ inference: true
12
+ language:
13
+ - pt
14
+ library_name: transformers
15
+ license: apache-2.0
16
+ metrics:
17
+ - perplexity
18
+ model-index:
19
+ - name: TeenyTinyLlama-160m
20
+ results:
21
+ - dataset:
22
+ args:
23
+ num_few_shot: 3
24
+ name: ENEM Challenge (No Images)
25
+ split: train
26
+ type: eduagarcia/enem_challenge
27
+ metrics:
28
+ - name: accuracy
29
+ type: acc
30
+ value: 19.24
31
+ source:
32
+ name: Open Portuguese LLM Leaderboard
33
+ url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=nicholasKluge/TeenyTinyLlama-160m
34
+ task:
35
+ name: Text Generation
36
+ type: text-generation
37
+ - dataset:
38
+ args:
39
+ num_few_shot: 3
40
+ name: BLUEX (No Images)
41
+ split: train
42
+ type: eduagarcia-temp/BLUEX_without_images
43
+ metrics:
44
+ - name: accuracy
45
+ type: acc
46
+ value: 23.09
47
+ source:
48
+ name: Open Portuguese LLM Leaderboard
49
+ url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=nicholasKluge/TeenyTinyLlama-160m
50
+ task:
51
+ name: Text Generation
52
+ type: text-generation
53
+ - dataset:
54
+ args:
55
+ num_few_shot: 3
56
+ name: OAB Exams
57
+ split: train
58
+ type: eduagarcia/oab_exams
59
+ metrics:
60
+ - name: accuracy
61
+ type: acc
62
+ value: 22.37
63
+ source:
64
+ name: Open Portuguese LLM Leaderboard
65
+ url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=nicholasKluge/TeenyTinyLlama-160m
66
+ task:
67
+ name: Text Generation
68
+ type: text-generation
69
+ - dataset:
70
+ args:
71
+ num_few_shot: 15
72
+ name: Assin2 RTE
73
+ split: test
74
+ type: assin2
75
+ metrics:
76
+ - name: f1-macro
77
+ type: f1_macro
78
+ value: 53.97
79
+ source:
80
+ name: Open Portuguese LLM Leaderboard
81
+ url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=nicholasKluge/TeenyTinyLlama-160m
82
+ task:
83
+ name: Text Generation
84
+ type: text-generation
85
+ - dataset:
86
+ args:
87
+ num_few_shot: 15
88
+ name: Assin2 STS
89
+ split: test
90
+ type: eduagarcia/portuguese_benchmark
91
+ metrics:
92
+ - name: pearson
93
+ type: pearson
94
+ value: 0.24
95
+ source:
96
+ name: Open Portuguese LLM Leaderboard
97
+ url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=nicholasKluge/TeenyTinyLlama-160m
98
+ task:
99
+ name: Text Generation
100
+ type: text-generation
101
+ - dataset:
102
+ args:
103
+ num_few_shot: 15
104
+ name: FaQuAD NLI
105
+ split: test
106
+ type: ruanchaves/faquad-nli
107
+ metrics:
108
+ - name: f1-macro
109
+ type: f1_macro
110
+ value: 43.97
111
+ source:
112
+ name: Open Portuguese LLM Leaderboard
113
+ url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=nicholasKluge/TeenyTinyLlama-160m
114
+ task:
115
+ name: Text Generation
116
+ type: text-generation
117
+ - dataset:
118
+ args:
119
+ num_few_shot: 25
120
+ name: HateBR Binary
121
+ split: test
122
+ type: ruanchaves/hatebr
123
+ metrics:
124
+ - name: f1-macro
125
+ type: f1_macro
126
+ value: 36.92
127
+ source:
128
+ name: Open Portuguese LLM Leaderboard
129
+ url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=nicholasKluge/TeenyTinyLlama-160m
130
+ task:
131
+ name: Text Generation
132
+ type: text-generation
133
+ - dataset:
134
+ args:
135
+ num_few_shot: 25
136
+ name: PT Hate Speech Binary
137
+ split: test
138
+ type: hate_speech_portuguese
139
+ metrics:
140
+ - name: f1-macro
141
+ type: f1_macro
142
+ value: 42.63
143
+ source:
144
+ name: Open Portuguese LLM Leaderboard
145
+ url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=nicholasKluge/TeenyTinyLlama-160m
146
+ task:
147
+ name: Text Generation
148
+ type: text-generation
149
+ - dataset:
150
+ args:
151
+ num_few_shot: 25
152
+ name: tweetSentBR
153
+ split: test
154
+ type: eduagarcia-temp/tweetsentbr
155
+ metrics:
156
+ - name: f1-macro
157
+ type: f1_macro
158
+ value: 11.39
159
+ source:
160
+ name: Open Portuguese LLM Leaderboard
161
+ url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=nicholasKluge/TeenyTinyLlama-160m
162
+ task:
163
+ name: Text Generation
164
+ type: text-generation
165
+ model_creator: nicholasKluge
166
+ model_name: TeenyTinyLlama-160m
167
+ pipeline_tag: text-generation
168
+ quantized_by: afrideva
169
+ tags:
170
+ - text-generation-inference
171
+ - gguf
172
+ - ggml
173
+ - quantized
174
+ widget:
175
+ - example_title: Exemplo
176
+ text: 'A PUCRS é uma universidade '
177
+ - example_title: Exemplo
178
+ text: A muitos anos atrás, em uma galáxia muito distante, vivia uma raça de
179
+ - example_title: Exemplo
180
+ text: Em meio a um escândalo, a frente parlamentar pediu ao Senador Silva para
181
+ ---
182
+
183
+ # TeenyTinyLlama-160m-GGUF
184
+
185
+ Quantized GGUF model files for [TeenyTinyLlama-160m](https://huggingface.co/nicholasKluge/TeenyTinyLlama-160m) from [nicholasKluge](https://huggingface.co/nicholasKluge)
186
+
187
+ ## Original Model Card:
188
+
189
+ # TeenyTinyLlama-160m
190
+
191
+ <img src="./logo.png" alt="A little llama wearing a mushroom hat and a monocle." height="200">
192
+
193
+ ## Model Summary
194
+
195
+ Large language models (LLMs) have significantly advanced natural language processing, but their progress has yet to be equal across languages. While most LLMs are trained in high-resource languages like English, multilingual models generally underperform monolingual ones. Additionally, aspects of their multilingual foundation sometimes restrict the byproducts they produce, like computational demands and licensing regimes. Hence, we developed the _TeenyTinyLlama_ pair: two compact models for Brazilian Portuguese text generation.
196
+
197
+ Read our preprint on [ArXiv](https://arxiv.org/abs/2401.16640).
198
+
199
+ ## Details
200
+
201
+ - **Architecture:** a Transformer-based model pre-trained via causal language modeling
202
+ - **Size:** 162,417,408 parameters
203
+ - **Context length:** 2048 tokens
204
+ - **Dataset:** [Pt-Corpus Instruct](https://huggingface.co/datasets/nicholasKluge/Pt-Corpus-Instruct) (6.2B tokens)
205
+ - **Language:** Portuguese
206
+ - **Number of steps:** 458,000
207
+ - **GPU:** 1 NVIDIA A100-SXM4-40GB
208
+ - **Training time**: ~ 36 hours
209
+ - **Emissions:** 5.6 KgCO2 (Germany)
210
+ - **Total energy consumption:** 15.5 kWh
211
+
212
+ This repository has the [source code](https://github.com/Nkluge-correa/TeenyTinyLlama) used to train this model. The main libraries used are:
213
+
214
+ - [Transformers](https://github.com/huggingface/transformers)
215
+ - [PyTorch](https://github.com/pytorch/pytorch)
216
+ - [Datasets](https://github.com/huggingface/datasets)
217
+ - [Tokenizers](https://github.com/huggingface/tokenizers)
218
+ - [Sentencepiece](https://github.com/google/sentencepiece)
219
+ - [Accelerate](https://github.com/huggingface/accelerate)
220
+ - [FlashAttention](https://github.com/Dao-AILab/flash-attention)
221
+ - [Codecarbon](https://github.com/mlco2/codecarbon)
222
+
223
+ ## Intended Uses
224
+
225
+ The primary intended use of TeenyTinyLlama is to research the challenges related to developing language models for low-resource languages. Checkpoints saved during training are intended to provide a controlled setting for performing scientific experiments. You may also further fine-tune and adapt TeenyTinyLlama for deployment, as long as your use is following the Apache 2.0 license. If you decide to use pre-trained TeenyTinyLlama as a basis for your fine-tuned model, please conduct your own risk and bias assessment.
226
+
227
+ ## Out-of-scope Use
228
+
229
+ TeenyTinyLlama is not intended for deployment. It is not a product and should not be used for human-facing interactions.
230
+
231
+ TeenyTinyLlama models are Brazilian Portuguese language only and are not suitable for translation or generating text in other languages.
232
+
233
+ TeenyTinyLlama has not been fine-tuned for downstream contexts in which language models are commonly deployed.
234
+
235
+ ## Basic usage
236
+
237
+ Using the `pipeline`:
238
+
239
+ ```python
240
+ from transformers import pipeline
241
+
242
+ generator = pipeline("text-generation", model="nicholasKluge/TeenyTinyLlama-160m")
243
+
244
+ completions = generator("Astronomia é a ciência", num_return_sequences=2, max_new_tokens=100)
245
+
246
+ for comp in completions:
247
+ print(f"🤖 {comp['generated_text']}")
248
+ ```
249
+
250
+ Using the `AutoTokenizer` and `AutoModelForCausalLM`:
251
+
252
+ ```python
253
+ from transformers import AutoTokenizer, AutoModelForCausalLM
254
+ import torch
255
+
256
+ # Load model and the tokenizer
257
+ tokenizer = AutoTokenizer.from_pretrained("nicholasKluge/TeenyTinyLlama-160m", revision='main')
258
+ model = AutoModelForCausalLM.from_pretrained("nicholasKluge/TeenyTinyLlama-160m", revision='main')
259
+
260
+ # Pass the model to your device
261
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
262
+
263
+ model.eval()
264
+ model.to(device)
265
+
266
+ # Tokenize the inputs and pass them to the device
267
+ inputs = tokenizer("Astronomia é a ciência", return_tensors="pt").to(device)
268
+
269
+ # Generate some text
270
+ completions = model.generate(**inputs, num_return_sequences=2, max_new_tokens=100)
271
+
272
+ # Print the generated text
273
+ for i, completion in enumerate(completions):
274
+ print(f'🤖 {tokenizer.decode(completion)}')
275
+ ```
276
+
277
+ ## Limitations
278
+
279
+ Like almost all other language models trained on large text datasets scraped from the web, the TTL pair exhibited behavior that does not make them an out-of-the-box solution to many real-world applications, especially those requiring factual, reliable, nontoxic text generation. Our models are all subject to the following:
280
+
281
+ - **Hallucinations:** This model can produce content that can be mistaken for truth but is, in fact, misleading or entirely false, i.e., hallucination.
282
+
283
+ - **Biases and Toxicity:** This model inherits the social and historical stereotypes from the data used to train it. Given these biases, the model can produce toxic content, i.e., harmful, offensive, or detrimental to individuals, groups, or communities.
284
+
285
+ - **Unreliable Code:** The model may produce incorrect code snippets and statements. These code generations should not be treated as suggestions or accurate solutions.
286
+
287
+ - **Language Limitations:** The model is primarily designed to understand standard Brazilian Portuguese. Other languages might challenge its comprehension, leading to potential misinterpretations or errors in response.
288
+
289
+ - **Repetition and Verbosity:** The model may get stuck on repetition loops (especially if the repetition penalty during generations is set to a meager value) or produce verbose responses unrelated to the prompt it was given.
290
+
291
+ Hence, even though our models are released with a permissive license, we urge users to perform their risk analysis on these models if intending to use them for real-world applications and also have humans moderating the outputs of these models in applications where they will interact with an audience, guaranteeing users are always aware they are interacting with a language model.
292
+
293
+ ## Evaluations
294
+
295
+ During our training runs, both models showed consistent convergence. At no point did our evaluation curves show signs of overfitting or saturation. In the case of our 460m parameter model, we intentionally trained past the optimal point by approximately 75,000 steps to assess if there were any signs of saturation, but our evaluations consistently gave better results. We hypothesize that our models are under-trained but can improve if further trained to pass the Chinchilla optimal range.
296
+
297
+ | Processed Tokens | Perplexity | Energy Consumption (kWh) | Emissions (KgCO2eq) |
298
+ |------------------|------------|---------------------------|----------------------|
299
+ | 8.1M | 20.49 | 9.40 | 3.34 |
300
+ | 1.6B | 16.90 | 18.82 | 6.70 |
301
+ | 2.4B | 15.43 | 28.59 | 10.16 |
302
+ | 3.2B | 14.64 | 38.20 | 13.57 |
303
+ | 4.0B | 14.08 | 48.04 | 17.07 |
304
+ | 4.9B | 13.61 | 57.74 | 20.52 |
305
+ | 5.7B | 13.25 | 67.32 | 23.92 |
306
+ | 6.5B | 12.87 | 76.84 | 27.30 |
307
+ | 7.3B | 12.57 | 86.40 | 30.70 |
308
+ | 8.1B | 12.27 | 96.19 | 34.18 |
309
+ | 9.0B | 11.96 | 106.06 | 37.70 |
310
+ | 9.8B | 11.77 | 115.69 | 41.31 |
311
+
312
+ ## Benchmarks
313
+
314
+ Evaluations on benchmarks were performed using the [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) (by [EleutherAI](https://www.eleuther.ai/)). [Laiviet](https://github.com/laiviet/lm-evaluation-harness) translated the tasks from the LM-Evaluation-Harness we used. The results of models marked with an "*" were extracted from the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
315
+
316
+ | | **ARC** | **HellaSwag** | **MMLU** | **TruthfulQA** | **Average** |
317
+ |------------------|-----------|---------------|-----------|----------------|-------------|
318
+ | Pythia-410m | 24.83* | 41.29* | 25.99* | 40.95* | 33.26 |
319
+ | **TTL-460m** | 29.40 | 33.00 | 28.55 | 41.10 | 33.01 |
320
+ | Bloom-560m | 24.74* | 37.15* | 24.22* | 42.44* | 32.13 |
321
+ | Xglm-564M | 25.56 | 34.64* | 25.18* | 42.53 | 31.97 |
322
+ | OPT-350m | 23.55* | 36.73* | 26.02* | 40.83* | 31.78 |
323
+ | **TTL-160m** | 26.15 | 29.29 | 28.11 | 41.12 | 31.16 |
324
+ | Pythia-160m | 24.06* | 31.39* | 24.86* | 44.34* | 31.16 |
325
+ | OPT-125m | 22.87* | 31.47* | 26.02* | 42.87* | 30.80 |
326
+ | GPorTuguese-2 | 22.48 | 29.62 | 27.36 | 41.44 | 30.22 |
327
+ | Gpt2-small | 21.48* | 31.60* | 25.79* | 40.65* | 29.97 |
328
+ | Multilingual GPT | 23.81 | 26.37* | 25.17* | 39.62 | 28.73 |
329
+
330
+ Evaluations on Brazilian Portuguese benchmarks were performed using a [Portuguese implementation of the EleutherAI LM Evaluation Harness](https://github.com/eduagarcia/lm-evaluation-harness-pt) (created by [Eduardo Garcia](https://github.com/eduagarcia/lm-evaluation-harness-pt)).
331
+
332
+ | | **ASSIN2 RTE** | **ASSIN2 STS** | **BLUEX** | **ENEM** | **FAQUAD NLI** | **HateBR** | **OAB Exams** | **Average** |
333
+ |----------------|----------------|----------------|-----------|----------|----------------|------------|---------------|-------------|
334
+ | Qwen-1.8B | 64.83 | 19.53 | 26.15 | 30.23 | 43.97 | 33.33 | 27.20 | 35.03 |
335
+ | TinyLlama-1.1B | 58.93 | 13.57 | 22.81 | 22.25 | 43.97 | 36.92 | 23.64 | 31.72 |
336
+ | **TTL-460m** | 53.93 | 12.66 | 22.81 | 19.87 | 49.01 | 33.59 | 27.06 | 31.27 |
337
+ | XGLM-564m | 49.61 | 22.91 | 19.61 | 19.38 | 43.97 | 33.99 | 23.42 | 30.41 |
338
+ | Bloom-1b7 | 53.60 | 4.81 | 21.42 | 18.96 | 43.97 | 34.89 | 23.05 | 28.67 |
339
+ | **TTL-160m** | 53.36 | 2.58 | 21.84 | 18.75 | 43.97 | 36.88 | 22.60 | 28.56 |
340
+ | OPT-125m | 39.77 | 2.00 | 21.84 | 17.42 | 43.97 | 47.04 | 22.78 | 27.83 |
341
+ | Pythia-160 | 33.33 | 12.81 | 16.13 | 16.66 | 50.36 | 41.09 | 22.82 | 27.60 |
342
+ | OLMo-1b | 34.12 | 9.28 | 18.92 | 20.29 | 43.97 | 41.33 | 22.96 | 27.26 |
343
+ | Bloom-560m | 33.33 | 8.48 | 18.92 | 19.03 | 43.97 | 37.07 | 23.05 | 26.26 |
344
+ | Pythia-410m | 33.33 | 4.80 | 19.47 | 19.45 | 43.97 | 33.33 | 23.01 | 25.33 |
345
+ | OPT-350m | 33.33 | 3.65 | 20.72 | 17.35 | 44.71 | 33.33 | 23.01 | 25.15 |
346
+ | GPT-2 small | 33.26 | 0.00 | 10.43 | 11.20 | 43.52 | 33.68 | 13.12 | 20.74 |
347
+ | GPorTuguese | 33.33 | 3.85 | 14.74 | 3.01 | 28.81 | 33.33 | 21.23 | 19.75 |
348
+ | Samba-1.1B | 33.33 | 1.30 | 8.07 | 10.22 | 17.72 | 35.79 | 15.03 | 17.35 |
349
+
350
+ ## Fine-Tuning Comparisons
351
+
352
+ To further evaluate the downstream capabilities of our models, we decided to employ a basic fine-tuning procedure for our TTL pair on a subset of tasks from the Poeta benchmark. We apply the same procedure for comparison purposes on both [BERTimbau](https://huggingface.co/neuralmind/bert-base-portuguese-cased) models, given that they are also LLM trained from scratch in Brazilian Portuguese and have a similar size range to our models. We used these comparisons to assess if our pre-training runs produced LLM capable of producing good results ("good" here means "close to BERTimbau") when utilized for downstream applications.
353
+
354
+ | Models | IMDB | FaQuAD-NLI | HateBr | Assin2 | AgNews | Average |
355
+ |-----------------|-----------|------------|-----------|-----------|-----------|---------|
356
+ | BERTimbau-large | **93.58** | 92.26 | 91.57 | **88.97** | 94.11 | 92.10 |
357
+ | BERTimbau-small | 92.22 | **93.07** | 91.28 | 87.45 | 94.19 | 91.64 |
358
+ | **TTL-460m** | 91.64 | 91.18 | **92.28** | 86.43 | **94.42** | 91.19 |
359
+ | **TTL-160m** | 91.14 | 90.00 | 90.71 | 85.78 | 94.05 | 90.34 |
360
+
361
+ All the shown results are the higher accuracy scores achieved on the respective task test sets after fine-tuning the models on the training sets. All fine-tuning runs used the same hyperparameters, and the code implementation can be found in the [model cards](https://huggingface.co/nicholasKluge/TeenyTinyLlama-460m-HateBR) of our fine-tuned models.
362
+
363
+ ## Cite as 🤗
364
+
365
+ ```latex
366
+
367
+ @misc{correa24ttllama,
368
+ title = {TeenyTinyLlama: open-source tiny language models trained in Brazilian Portuguese},
369
+ author = {Corr{\^e}a, Nicholas Kluge and Falk, Sophia and Fatimah, Shiza and Sen, Aniket and De Oliveira, Nythamar},
370
+ journal={arXiv preprint arXiv:2401.16640},
371
+ year={2024}
372
+ }
373
+
374
+ ```
375
+
376
+ ## Funding
377
+
378
+ This repository was built as part of the RAIES ([Rede de Inteligência Artificial Ética e Segura](https://www.raies.org/)) initiative, a project supported by FAPERGS - ([Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul](https://fapergs.rs.gov.br/inicial)), Brazil.
379
+
380
+ ## License
381
+
382
+ TeenyTinyLlama-160m is licensed under the Apache License, Version 2.0. See the [LICENSE](LICENSE) file for more details.