|
|
|
|
|
|
|
from logger import setup_logger |
|
from model import BiSeNet |
|
from face_dataset import FaceMask |
|
|
|
import torch |
|
import torch.nn as nn |
|
from torch.utils.data import DataLoader |
|
import torch.nn.functional as F |
|
import torch.distributed as dist |
|
|
|
import os |
|
import os.path as osp |
|
import logging |
|
import time |
|
import numpy as np |
|
from tqdm import tqdm |
|
import math |
|
from PIL import Image |
|
import torchvision.transforms as transforms |
|
import cv2 |
|
|
|
def vis_parsing_maps(im, parsing_anno, stride, save_im=False, save_path='vis_results/parsing_map_on_im.jpg'): |
|
|
|
part_colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], |
|
[255, 0, 85], [255, 0, 170], |
|
[0, 255, 0], [85, 255, 0], [170, 255, 0], |
|
[0, 255, 85], [0, 255, 170], |
|
[0, 0, 255], [85, 0, 255], [170, 0, 255], |
|
[0, 85, 255], [0, 170, 255], |
|
[255, 255, 0], [255, 255, 85], [255, 255, 170], |
|
[255, 0, 255], [255, 85, 255], [255, 170, 255], |
|
[0, 255, 255], [85, 255, 255], [170, 255, 255]] |
|
|
|
im = np.array(im) |
|
vis_im = im.copy().astype(np.uint8) |
|
vis_parsing_anno = parsing_anno.copy().astype(np.uint8) |
|
vis_parsing_anno = cv2.resize(vis_parsing_anno, None, fx=stride, fy=stride, interpolation=cv2.INTER_NEAREST) |
|
vis_parsing_anno_color = np.zeros((vis_parsing_anno.shape[0], vis_parsing_anno.shape[1], 3)) + 255 |
|
|
|
num_of_class = np.max(vis_parsing_anno) |
|
|
|
for pi in range(1, num_of_class + 1): |
|
index = np.where(vis_parsing_anno == pi) |
|
vis_parsing_anno_color[index[0], index[1], :] = part_colors[pi] |
|
|
|
vis_parsing_anno_color = vis_parsing_anno_color.astype(np.uint8) |
|
|
|
vis_im = cv2.addWeighted(cv2.cvtColor(vis_im, cv2.COLOR_RGB2BGR), 0.4, vis_parsing_anno_color, 0.6, 0) |
|
|
|
|
|
if save_im: |
|
cv2.imwrite(save_path, vis_im, [int(cv2.IMWRITE_JPEG_QUALITY), 100]) |
|
|
|
|
|
|
|
def evaluate(respth='./res/test_res', dspth='./data', cp='model_final_diss.pth'): |
|
|
|
if not os.path.exists(respth): |
|
os.makedirs(respth) |
|
|
|
n_classes = 19 |
|
net = BiSeNet(n_classes=n_classes) |
|
net.cuda() |
|
save_pth = osp.join('res/cp', cp) |
|
net.load_state_dict(torch.load(save_pth)) |
|
net.eval() |
|
|
|
to_tensor = transforms.Compose([ |
|
transforms.ToTensor(), |
|
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), |
|
]) |
|
with torch.no_grad(): |
|
for image_path in os.listdir(dspth): |
|
img = Image.open(osp.join(dspth, image_path)) |
|
image = img.resize((512, 512), Image.BILINEAR) |
|
img = to_tensor(image) |
|
img = torch.unsqueeze(img, 0) |
|
img = img.cuda() |
|
out = net(img)[0] |
|
parsing = out.squeeze(0).cpu().numpy().argmax(0) |
|
|
|
vis_parsing_maps(image, parsing, stride=1, save_im=True, save_path=osp.join(respth, image_path)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
setup_logger('./res') |
|
evaluate() |
|
|