|
|
|
|
|
|
|
|
|
from PIL import Image |
|
import PIL.ImageEnhance as ImageEnhance |
|
import random |
|
import numpy as np |
|
|
|
class RandomCrop(object): |
|
def __init__(self, size, *args, **kwargs): |
|
self.size = size |
|
|
|
def __call__(self, im_lb): |
|
im = im_lb['im'] |
|
lb = im_lb['lb'] |
|
assert im.size == lb.size |
|
W, H = self.size |
|
w, h = im.size |
|
|
|
if (W, H) == (w, h): return dict(im=im, lb=lb) |
|
if w < W or h < H: |
|
scale = float(W) / w if w < h else float(H) / h |
|
w, h = int(scale * w + 1), int(scale * h + 1) |
|
im = im.resize((w, h), Image.BILINEAR) |
|
lb = lb.resize((w, h), Image.NEAREST) |
|
sw, sh = random.random() * (w - W), random.random() * (h - H) |
|
crop = int(sw), int(sh), int(sw) + W, int(sh) + H |
|
return dict( |
|
im = im.crop(crop), |
|
lb = lb.crop(crop) |
|
) |
|
|
|
|
|
class HorizontalFlip(object): |
|
def __init__(self, p=0.5, *args, **kwargs): |
|
self.p = p |
|
|
|
def __call__(self, im_lb): |
|
if random.random() > self.p: |
|
return im_lb |
|
else: |
|
im = im_lb['im'] |
|
lb = im_lb['lb'] |
|
|
|
|
|
|
|
|
|
flip_lb = np.array(lb) |
|
flip_lb[lb == 2] = 3 |
|
flip_lb[lb == 3] = 2 |
|
flip_lb[lb == 4] = 5 |
|
flip_lb[lb == 5] = 4 |
|
flip_lb[lb == 7] = 8 |
|
flip_lb[lb == 8] = 7 |
|
flip_lb = Image.fromarray(flip_lb) |
|
return dict(im = im.transpose(Image.FLIP_LEFT_RIGHT), |
|
lb = flip_lb.transpose(Image.FLIP_LEFT_RIGHT), |
|
) |
|
|
|
|
|
class RandomScale(object): |
|
def __init__(self, scales=(1, ), *args, **kwargs): |
|
self.scales = scales |
|
|
|
def __call__(self, im_lb): |
|
im = im_lb['im'] |
|
lb = im_lb['lb'] |
|
W, H = im.size |
|
scale = random.choice(self.scales) |
|
w, h = int(W * scale), int(H * scale) |
|
return dict(im = im.resize((w, h), Image.BILINEAR), |
|
lb = lb.resize((w, h), Image.NEAREST), |
|
) |
|
|
|
|
|
class ColorJitter(object): |
|
def __init__(self, brightness=None, contrast=None, saturation=None, *args, **kwargs): |
|
if not brightness is None and brightness>0: |
|
self.brightness = [max(1-brightness, 0), 1+brightness] |
|
if not contrast is None and contrast>0: |
|
self.contrast = [max(1-contrast, 0), 1+contrast] |
|
if not saturation is None and saturation>0: |
|
self.saturation = [max(1-saturation, 0), 1+saturation] |
|
|
|
def __call__(self, im_lb): |
|
im = im_lb['im'] |
|
lb = im_lb['lb'] |
|
r_brightness = random.uniform(self.brightness[0], self.brightness[1]) |
|
r_contrast = random.uniform(self.contrast[0], self.contrast[1]) |
|
r_saturation = random.uniform(self.saturation[0], self.saturation[1]) |
|
im = ImageEnhance.Brightness(im).enhance(r_brightness) |
|
im = ImageEnhance.Contrast(im).enhance(r_contrast) |
|
im = ImageEnhance.Color(im).enhance(r_saturation) |
|
return dict(im = im, |
|
lb = lb, |
|
) |
|
|
|
|
|
class MultiScale(object): |
|
def __init__(self, scales): |
|
self.scales = scales |
|
|
|
def __call__(self, img): |
|
W, H = img.size |
|
sizes = [(int(W*ratio), int(H*ratio)) for ratio in self.scales] |
|
imgs = [] |
|
[imgs.append(img.resize(size, Image.BILINEAR)) for size in sizes] |
|
return imgs |
|
|
|
|
|
class Compose(object): |
|
def __init__(self, do_list): |
|
self.do_list = do_list |
|
|
|
def __call__(self, im_lb): |
|
for comp in self.do_list: |
|
im_lb = comp(im_lb) |
|
return im_lb |
|
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
flip = HorizontalFlip(p = 1) |
|
crop = RandomCrop((321, 321)) |
|
rscales = RandomScale((0.75, 1.0, 1.5, 1.75, 2.0)) |
|
img = Image.open('data/img.jpg') |
|
lb = Image.open('data/label.png') |
|
|