Update handler.py
Browse files- handler.py +3 -40
handler.py
CHANGED
@@ -5,7 +5,6 @@ import base64
|
|
5 |
|
6 |
from pyannote.audio import Pipeline
|
7 |
from transformers import pipeline, AutoModelForCausalLM
|
8 |
-
from diarization_utils import diarize
|
9 |
from huggingface_hub import HfApi
|
10 |
from pydantic import ValidationError
|
11 |
from starlette.exceptions import HTTPException
|
@@ -22,16 +21,6 @@ class EndpointHandler():
|
|
22 |
logger.info(f"Using device: {device.type}")
|
23 |
torch_dtype = torch.float32 if device.type == "cpu" else torch.float16
|
24 |
|
25 |
-
self.assistant_model = AutoModelForCausalLM.from_pretrained(
|
26 |
-
model_settings.assistant_model,
|
27 |
-
torch_dtype=torch_dtype,
|
28 |
-
low_cpu_mem_usage=True,
|
29 |
-
use_safetensors=True
|
30 |
-
) if model_settings.assistant_model else None
|
31 |
-
|
32 |
-
if self.assistant_model:
|
33 |
-
self.assistant_model.to(device)
|
34 |
-
|
35 |
self.asr_pipeline = pipeline(
|
36 |
"automatic-speech-recognition",
|
37 |
model=model_settings.asr_model,
|
@@ -39,18 +28,6 @@ class EndpointHandler():
|
|
39 |
device=device
|
40 |
)
|
41 |
|
42 |
-
if model_settings.diarization_model:
|
43 |
-
# diarization pipeline doesn't raise if there is no token
|
44 |
-
HfApi().whoami(model_settings.hf_token)
|
45 |
-
self.diarization_pipeline = Pipeline.from_pretrained(
|
46 |
-
checkpoint_path=model_settings.diarization_model,
|
47 |
-
use_auth_token=model_settings.hf_token,
|
48 |
-
)
|
49 |
-
self.diarization_pipeline.to(device)
|
50 |
-
else:
|
51 |
-
self.diarization_pipeline = None
|
52 |
-
|
53 |
-
|
54 |
def __call__(self, inputs):
|
55 |
file = inputs.pop("inputs")
|
56 |
file = base64.b64decode(file)
|
@@ -65,8 +42,7 @@ class EndpointHandler():
|
|
65 |
|
66 |
generate_kwargs = {
|
67 |
"task": parameters.task,
|
68 |
-
"language": parameters.language
|
69 |
-
"assistant_model": self.assistant_model if parameters.assisted else None
|
70 |
}
|
71 |
|
72 |
try:
|
@@ -81,23 +57,10 @@ class EndpointHandler():
|
|
81 |
logger.error(f"ASR inference error: {str(e)}")
|
82 |
raise HTTPException(status_code=400, detail=f"ASR inference error: {str(e)}")
|
83 |
except Exception as e:
|
84 |
-
logger.error(f"Unknown error
|
85 |
-
raise HTTPException(status_code=500, detail=f"Unknown error
|
86 |
-
|
87 |
-
if self.diarization_pipeline:
|
88 |
-
try:
|
89 |
-
transcript = diarize(self.diarization_pipeline, file, parameters, asr_outputs)
|
90 |
-
except RuntimeError as e:
|
91 |
-
logger.error(f"Diarization inference error: {str(e)}")
|
92 |
-
raise HTTPException(status_code=400, detail=f"Diarization inference error: {str(e)}")
|
93 |
-
except Exception as e:
|
94 |
-
logger.error(f"Unknown error during diarization: {str(e)}")
|
95 |
-
raise HTTPException(status_code=500, detail=f"Unknown error during diarization: {str(e)}")
|
96 |
-
else:
|
97 |
-
transcript = []
|
98 |
|
99 |
return {
|
100 |
-
"speakers": transcript,
|
101 |
"chunks": asr_outputs["chunks"],
|
102 |
"text": asr_outputs["text"],
|
103 |
}
|
|
|
5 |
|
6 |
from pyannote.audio import Pipeline
|
7 |
from transformers import pipeline, AutoModelForCausalLM
|
|
|
8 |
from huggingface_hub import HfApi
|
9 |
from pydantic import ValidationError
|
10 |
from starlette.exceptions import HTTPException
|
|
|
21 |
logger.info(f"Using device: {device.type}")
|
22 |
torch_dtype = torch.float32 if device.type == "cpu" else torch.float16
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
self.asr_pipeline = pipeline(
|
25 |
"automatic-speech-recognition",
|
26 |
model=model_settings.asr_model,
|
|
|
28 |
device=device
|
29 |
)
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
def __call__(self, inputs):
|
32 |
file = inputs.pop("inputs")
|
33 |
file = base64.b64decode(file)
|
|
|
42 |
|
43 |
generate_kwargs = {
|
44 |
"task": parameters.task,
|
45 |
+
"language": parameters.language
|
|
|
46 |
}
|
47 |
|
48 |
try:
|
|
|
57 |
logger.error(f"ASR inference error: {str(e)}")
|
58 |
raise HTTPException(status_code=400, detail=f"ASR inference error: {str(e)}")
|
59 |
except Exception as e:
|
60 |
+
logger.error(f"Unknown error during ASR inference: {str(e)}")
|
61 |
+
raise HTTPException(status_code=500, detail=f"Unknown error during ASR inference: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
return {
|
|
|
64 |
"chunks": asr_outputs["chunks"],
|
65 |
"text": asr_outputs["text"],
|
66 |
}
|