Delete diarization_utils.py
Browse files- diarization_utils.py +0 -141
diarization_utils.py
DELETED
@@ -1,141 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import numpy as np
|
3 |
-
from torchaudio import functional as F
|
4 |
-
from transformers.pipelines.audio_utils import ffmpeg_read
|
5 |
-
from starlette.exceptions import HTTPException
|
6 |
-
import sys
|
7 |
-
|
8 |
-
# Code from insanely-fast-whisper:
|
9 |
-
# https://github.com/Vaibhavs10/insanely-fast-whisper
|
10 |
-
|
11 |
-
import logging
|
12 |
-
logger = logging.getLogger(__name__)
|
13 |
-
|
14 |
-
def preprocess_inputs(inputs, sampling_rate):
|
15 |
-
inputs = ffmpeg_read(inputs, sampling_rate)
|
16 |
-
|
17 |
-
if sampling_rate != 16000:
|
18 |
-
inputs = F.resample(
|
19 |
-
torch.from_numpy(inputs), sampling_rate, 16000
|
20 |
-
).numpy()
|
21 |
-
|
22 |
-
if len(inputs.shape) != 1:
|
23 |
-
logger.error(f"Diarization pipeline expecs single channel audio, received {inputs.shape}")
|
24 |
-
raise HTTPException(
|
25 |
-
status_code=400,
|
26 |
-
detail=f"Diarization pipeline expecs single channel audio, received {inputs.shape}"
|
27 |
-
)
|
28 |
-
|
29 |
-
# diarization model expects float32 torch tensor of shape `(channels, seq_len)`
|
30 |
-
diarizer_inputs = torch.from_numpy(inputs).float()
|
31 |
-
diarizer_inputs = diarizer_inputs.unsqueeze(0)
|
32 |
-
|
33 |
-
return inputs, diarizer_inputs
|
34 |
-
|
35 |
-
|
36 |
-
def diarize_audio(diarizer_inputs, diarization_pipeline, parameters):
|
37 |
-
diarization = diarization_pipeline(
|
38 |
-
{"waveform": diarizer_inputs, "sample_rate": parameters.sampling_rate},
|
39 |
-
num_speakers=parameters.num_speakers,
|
40 |
-
min_speakers=parameters.min_speakers,
|
41 |
-
max_speakers=parameters.max_speakers,
|
42 |
-
)
|
43 |
-
|
44 |
-
segments = []
|
45 |
-
for segment, track, label in diarization.itertracks(yield_label=True):
|
46 |
-
segments.append(
|
47 |
-
{
|
48 |
-
"segment": {"start": segment.start, "end": segment.end},
|
49 |
-
"track": track,
|
50 |
-
"label": label,
|
51 |
-
}
|
52 |
-
)
|
53 |
-
|
54 |
-
# diarizer output may contain consecutive segments from the same speaker (e.g. {(0 -> 1, speaker_1), (1 -> 1.5, speaker_1), ...})
|
55 |
-
# we combine these segments to give overall timestamps for each speaker's turn (e.g. {(0 -> 1.5, speaker_1), ...})
|
56 |
-
new_segments = []
|
57 |
-
prev_segment = cur_segment = segments[0]
|
58 |
-
|
59 |
-
for i in range(1, len(segments)):
|
60 |
-
cur_segment = segments[i]
|
61 |
-
|
62 |
-
# check if we have changed speaker ("label")
|
63 |
-
if cur_segment["label"] != prev_segment["label"] and i < len(segments):
|
64 |
-
# add the start/end times for the super-segment to the new list
|
65 |
-
new_segments.append(
|
66 |
-
{
|
67 |
-
"segment": {
|
68 |
-
"start": prev_segment["segment"]["start"],
|
69 |
-
"end": cur_segment["segment"]["start"],
|
70 |
-
},
|
71 |
-
"speaker": prev_segment["label"],
|
72 |
-
}
|
73 |
-
)
|
74 |
-
prev_segment = segments[i]
|
75 |
-
|
76 |
-
# add the last segment(s) if there was no speaker change
|
77 |
-
new_segments.append(
|
78 |
-
{
|
79 |
-
"segment": {
|
80 |
-
"start": prev_segment["segment"]["start"],
|
81 |
-
"end": cur_segment["segment"]["end"],
|
82 |
-
},
|
83 |
-
"speaker": prev_segment["label"],
|
84 |
-
}
|
85 |
-
)
|
86 |
-
|
87 |
-
return new_segments
|
88 |
-
|
89 |
-
|
90 |
-
def post_process_segments_and_transcripts(new_segments, transcript, group_by_speaker) -> list:
|
91 |
-
# get the end timestamps for each chunk from the ASR output
|
92 |
-
end_timestamps = np.array(
|
93 |
-
[chunk["timestamp"][-1] if chunk["timestamp"][-1] is not None else sys.float_info.max for chunk in transcript])
|
94 |
-
segmented_preds = []
|
95 |
-
|
96 |
-
# align the diarizer timestamps and the ASR timestamps
|
97 |
-
for segment in new_segments:
|
98 |
-
# get the diarizer end timestamp
|
99 |
-
end_time = segment["segment"]["end"]
|
100 |
-
# find the ASR end timestamp that is closest to the diarizer's end timestamp and cut the transcript to here
|
101 |
-
upto_idx = np.argmin(np.abs(end_timestamps - end_time))
|
102 |
-
|
103 |
-
if group_by_speaker:
|
104 |
-
segmented_preds.append(
|
105 |
-
{
|
106 |
-
"speaker": segment["speaker"],
|
107 |
-
"text": "".join(
|
108 |
-
[chunk["text"] for chunk in transcript[: upto_idx + 1]]
|
109 |
-
),
|
110 |
-
"timestamp": (
|
111 |
-
transcript[0]["timestamp"][0],
|
112 |
-
transcript[upto_idx]["timestamp"][1],
|
113 |
-
),
|
114 |
-
}
|
115 |
-
)
|
116 |
-
else:
|
117 |
-
for i in range(upto_idx + 1):
|
118 |
-
segmented_preds.append({"speaker": segment["speaker"], **transcript[i]})
|
119 |
-
|
120 |
-
# crop the transcripts and timestamp lists according to the latest timestamp (for faster argmin)
|
121 |
-
transcript = transcript[upto_idx + 1:]
|
122 |
-
end_timestamps = end_timestamps[upto_idx + 1:]
|
123 |
-
|
124 |
-
if len(end_timestamps) == 0:
|
125 |
-
break
|
126 |
-
|
127 |
-
return segmented_preds
|
128 |
-
|
129 |
-
|
130 |
-
def diarize(diarization_pipeline, file, parameters, asr_outputs):
|
131 |
-
_, diarizer_inputs = preprocess_inputs(file, parameters.sampling_rate)
|
132 |
-
|
133 |
-
segments = diarize_audio(
|
134 |
-
diarizer_inputs,
|
135 |
-
diarization_pipeline,
|
136 |
-
parameters
|
137 |
-
)
|
138 |
-
|
139 |
-
return post_process_segments_and_transcripts(
|
140 |
-
segments, asr_outputs["chunks"], group_by_speaker=False
|
141 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|