Upload 11 files
Browse files- .gitattributes +1 -0
- 1_Pooling/config.json +10 -0
- README.md +585 -0
- config.json +26 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +51 -0
- tokenizer.json +3 -0
- tokenizer_config.json +55 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 384,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,585 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: intfloat/multilingual-e5-small
|
3 |
+
library_name: sentence-transformers
|
4 |
+
pipeline_tag: sentence-similarity
|
5 |
+
tags:
|
6 |
+
- sentence-transformers
|
7 |
+
- sentence-similarity
|
8 |
+
- feature-extraction
|
9 |
+
- generated_from_trainer
|
10 |
+
- dataset_size:867042
|
11 |
+
- loss:MultipleNegativesRankingLoss
|
12 |
+
widget:
|
13 |
+
- source_sentence: An air strike.
|
14 |
+
sentences:
|
15 |
+
- מר פרקינסון היה מזועזע אם היה יודע איך מר פוקס מתנהג.
|
16 |
+
- 'Sonia: Jangan berkata begitu.'
|
17 |
+
- En luftattack.
|
18 |
+
- source_sentence: The European Parliament has recently called for a guarantee that
|
19 |
+
40 % of the 10 % target will come from sources that do not compete with food production.
|
20 |
+
sentences:
|
21 |
+
- L' ordre du jour appelle l' examen du projet définitif d' ordre du jour tel qu'
|
22 |
+
il a été établi par la Conférence des présidents, le jeudi 13 janvier, conformément
|
23 |
+
à l' article 110 du règlement.
|
24 |
+
- می توانم با تمام وجود به این باور داشته باشم؟ می توانم در این باره چنین خشمگین
|
25 |
+
باشم؟"
|
26 |
+
- Europaparlamentet ba nylig om en garanti for at 40 % av de 10 % kommer fra kilder
|
27 |
+
som ikke konkurrerer med matvareproduksjon.
|
28 |
+
- source_sentence: In effect, this adds to the length of the workday and to its tensions.
|
29 |
+
sentences:
|
30 |
+
- Musimy wysłuchać opinii zainteresowanych stron, które rozwiązanie jest najatrakcyjniejsze
|
31 |
+
dla spółek.
|
32 |
+
- Вам надо держать себя в руках.
|
33 |
+
- درحقیقت ، یہ دنبھر کے کام اور اس سے وابستہ دباؤ میں اضافہ کرتا ہے ۔
|
34 |
+
- source_sentence: A few HIV positive mothers NOT in their first pregnancy (one was
|
35 |
+
in her ninth).
|
36 |
+
sentences:
|
37 |
+
- Beberapa ibu mengidap HIV positif TIDAK di kehamilan pertama mereka (salah satunya
|
38 |
+
bahkan di kehamilan kesembilan).
|
39 |
+
- Taigi, manau, kad taip ir pristatysiu jus – kaip pasakorę".
|
40 |
+
- הוא איפשר ראייה לשני מיליון אנשים ללא תשלום.
|
41 |
+
- source_sentence: What do they think it is that prevents the products of human ingenuity
|
42 |
+
from being themselves, fruits of the tree of life, and hence, in some sense, obeying
|
43 |
+
evolutionary rules?
|
44 |
+
sentences:
|
45 |
+
- 'Կարծում եք ի՞նչն է խանգարում, որ մարդկային հնարամտության արդյունքները իրենք էլ
|
46 |
+
լինեն կյանքի ծառի պտուղներ և այդպիսով ինչ-որ իմաստով ենթարկվեն էվոլուցիայի կանոններին:'
|
47 |
+
- Ja mēs varētu aktivēt šūnas, mēs varētu redzēt, kādus spēkus tās var atbrīvot,
|
48 |
+
ko tās var ierosināt un ko stiprināt. Ja mēs tās varētu izslēgt,
|
49 |
+
- (Smiech) No dobre, idem do Ameriky.
|
50 |
+
---
|
51 |
+
|
52 |
+
# SentenceTransformer based on intfloat/multilingual-e5-small
|
53 |
+
|
54 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
55 |
+
|
56 |
+
## Model Details
|
57 |
+
|
58 |
+
### Model Description
|
59 |
+
- **Model Type:** Sentence Transformer
|
60 |
+
- **Base model:** [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) <!-- at revision fd1525a9fd15316a2d503bf26ab031a61d056e98 -->
|
61 |
+
- **Maximum Sequence Length:** 512 tokens
|
62 |
+
- **Output Dimensionality:** 384 dimensions
|
63 |
+
- **Similarity Function:** Cosine Similarity
|
64 |
+
<!-- - **Training Dataset:** Unknown -->
|
65 |
+
<!-- - **Language:** Unknown -->
|
66 |
+
<!-- - **License:** Unknown -->
|
67 |
+
|
68 |
+
### Model Sources
|
69 |
+
|
70 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
71 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
72 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
73 |
+
|
74 |
+
### Full Model Architecture
|
75 |
+
|
76 |
+
```
|
77 |
+
SentenceTransformer(
|
78 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
79 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
80 |
+
(2): Normalize()
|
81 |
+
)
|
82 |
+
```
|
83 |
+
|
84 |
+
## Usage
|
85 |
+
|
86 |
+
### Direct Usage (Sentence Transformers)
|
87 |
+
|
88 |
+
First install the Sentence Transformers library:
|
89 |
+
|
90 |
+
```bash
|
91 |
+
pip install -U sentence-transformers
|
92 |
+
```
|
93 |
+
|
94 |
+
Then you can load this model and run inference.
|
95 |
+
```python
|
96 |
+
from sentence_transformers import SentenceTransformer
|
97 |
+
|
98 |
+
# Download from the 🤗 Hub
|
99 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
100 |
+
# Run inference
|
101 |
+
sentences = [
|
102 |
+
'What do they think it is that prevents the products of human ingenuity from being themselves, fruits of the tree of life, and hence, in some sense, obeying evolutionary rules?',
|
103 |
+
'Կարծում եք ի՞նչն է խանգարում, որ մարդկային հնարամտության արդյունքները իրենք էլ լինեն կյանքի ծառի պտուղներ և այդպիսով ինչ-որ իմաստով ենթարկվեն էվոլուցիայի կանոններին:',
|
104 |
+
'(Smiech) No dobre, idem do Ameriky.',
|
105 |
+
]
|
106 |
+
embeddings = model.encode(sentences)
|
107 |
+
print(embeddings.shape)
|
108 |
+
# [3, 384]
|
109 |
+
|
110 |
+
# Get the similarity scores for the embeddings
|
111 |
+
similarities = model.similarity(embeddings, embeddings)
|
112 |
+
print(similarities.shape)
|
113 |
+
# [3, 3]
|
114 |
+
```
|
115 |
+
|
116 |
+
<!--
|
117 |
+
### Direct Usage (Transformers)
|
118 |
+
|
119 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
120 |
+
|
121 |
+
</details>
|
122 |
+
-->
|
123 |
+
|
124 |
+
<!--
|
125 |
+
### Downstream Usage (Sentence Transformers)
|
126 |
+
|
127 |
+
You can finetune this model on your own dataset.
|
128 |
+
|
129 |
+
<details><summary>Click to expand</summary>
|
130 |
+
|
131 |
+
</details>
|
132 |
+
-->
|
133 |
+
|
134 |
+
<!--
|
135 |
+
### Out-of-Scope Use
|
136 |
+
|
137 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
138 |
+
-->
|
139 |
+
|
140 |
+
<!--
|
141 |
+
## Bias, Risks and Limitations
|
142 |
+
|
143 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
144 |
+
-->
|
145 |
+
|
146 |
+
<!--
|
147 |
+
### Recommendations
|
148 |
+
|
149 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
150 |
+
-->
|
151 |
+
|
152 |
+
## Training Details
|
153 |
+
|
154 |
+
### Training Dataset
|
155 |
+
|
156 |
+
#### Unnamed Dataset
|
157 |
+
|
158 |
+
|
159 |
+
* Size: 867,042 training samples
|
160 |
+
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
|
161 |
+
* Approximate statistics based on the first 1000 samples:
|
162 |
+
| | sentence_0 | sentence_1 |
|
163 |
+
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
|
164 |
+
| type | string | string |
|
165 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 21.83 tokens</li><li>max: 177 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 24.92 tokens</li><li>max: 229 tokens</li></ul> |
|
166 |
+
* Samples:
|
167 |
+
| sentence_0 | sentence_1 |
|
168 |
+
|:------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------|
|
169 |
+
| <code>I like English best of all subjects.</code> | <code>Tykkään englannista eniten kaikista aineista.</code> |
|
170 |
+
| <code>We shall offer negotiations. Quite right.</code> | <code>- Oferecer-nos-emos para negociar.</code> |
|
171 |
+
| <code>It was soon learned that Zelaya had been taken to Costa Rica, where he continued to call himself as the legal head of state.</code> | <code>Al snel werd bekend dat Zelaya naar Costa Rica was overgebracht, waar hij zich nog steeds het officiële staatshoofd noemde.</code> |
|
172 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
173 |
+
```json
|
174 |
+
{
|
175 |
+
"scale": 20.0,
|
176 |
+
"similarity_fct": "cos_sim"
|
177 |
+
}
|
178 |
+
```
|
179 |
+
|
180 |
+
### Training Hyperparameters
|
181 |
+
#### Non-Default Hyperparameters
|
182 |
+
|
183 |
+
- `num_train_epochs`: 1
|
184 |
+
- `multi_dataset_batch_sampler`: round_robin
|
185 |
+
|
186 |
+
#### All Hyperparameters
|
187 |
+
<details><summary>Click to expand</summary>
|
188 |
+
|
189 |
+
- `overwrite_output_dir`: False
|
190 |
+
- `do_predict`: False
|
191 |
+
- `eval_strategy`: no
|
192 |
+
- `prediction_loss_only`: True
|
193 |
+
- `per_device_train_batch_size`: 8
|
194 |
+
- `per_device_eval_batch_size`: 8
|
195 |
+
- `per_gpu_train_batch_size`: None
|
196 |
+
- `per_gpu_eval_batch_size`: None
|
197 |
+
- `gradient_accumulation_steps`: 1
|
198 |
+
- `eval_accumulation_steps`: None
|
199 |
+
- `torch_empty_cache_steps`: None
|
200 |
+
- `learning_rate`: 5e-05
|
201 |
+
- `weight_decay`: 0.0
|
202 |
+
- `adam_beta1`: 0.9
|
203 |
+
- `adam_beta2`: 0.999
|
204 |
+
- `adam_epsilon`: 1e-08
|
205 |
+
- `max_grad_norm`: 1
|
206 |
+
- `num_train_epochs`: 1
|
207 |
+
- `max_steps`: -1
|
208 |
+
- `lr_scheduler_type`: linear
|
209 |
+
- `lr_scheduler_kwargs`: {}
|
210 |
+
- `warmup_ratio`: 0.0
|
211 |
+
- `warmup_steps`: 0
|
212 |
+
- `log_level`: passive
|
213 |
+
- `log_level_replica`: warning
|
214 |
+
- `log_on_each_node`: True
|
215 |
+
- `logging_nan_inf_filter`: True
|
216 |
+
- `save_safetensors`: True
|
217 |
+
- `save_on_each_node`: False
|
218 |
+
- `save_only_model`: False
|
219 |
+
- `restore_callback_states_from_checkpoint`: False
|
220 |
+
- `no_cuda`: False
|
221 |
+
- `use_cpu`: False
|
222 |
+
- `use_mps_device`: False
|
223 |
+
- `seed`: 42
|
224 |
+
- `data_seed`: None
|
225 |
+
- `jit_mode_eval`: False
|
226 |
+
- `use_ipex`: False
|
227 |
+
- `bf16`: False
|
228 |
+
- `fp16`: False
|
229 |
+
- `fp16_opt_level`: O1
|
230 |
+
- `half_precision_backend`: auto
|
231 |
+
- `bf16_full_eval`: False
|
232 |
+
- `fp16_full_eval`: False
|
233 |
+
- `tf32`: None
|
234 |
+
- `local_rank`: 0
|
235 |
+
- `ddp_backend`: None
|
236 |
+
- `tpu_num_cores`: None
|
237 |
+
- `tpu_metrics_debug`: False
|
238 |
+
- `debug`: []
|
239 |
+
- `dataloader_drop_last`: False
|
240 |
+
- `dataloader_num_workers`: 0
|
241 |
+
- `dataloader_prefetch_factor`: None
|
242 |
+
- `past_index`: -1
|
243 |
+
- `disable_tqdm`: False
|
244 |
+
- `remove_unused_columns`: True
|
245 |
+
- `label_names`: None
|
246 |
+
- `load_best_model_at_end`: False
|
247 |
+
- `ignore_data_skip`: False
|
248 |
+
- `fsdp`: []
|
249 |
+
- `fsdp_min_num_params`: 0
|
250 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
251 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
252 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
253 |
+
- `deepspeed`: None
|
254 |
+
- `label_smoothing_factor`: 0.0
|
255 |
+
- `optim`: adamw_torch
|
256 |
+
- `optim_args`: None
|
257 |
+
- `adafactor`: False
|
258 |
+
- `group_by_length`: False
|
259 |
+
- `length_column_name`: length
|
260 |
+
- `ddp_find_unused_parameters`: None
|
261 |
+
- `ddp_bucket_cap_mb`: None
|
262 |
+
- `ddp_broadcast_buffers`: False
|
263 |
+
- `dataloader_pin_memory`: True
|
264 |
+
- `dataloader_persistent_workers`: False
|
265 |
+
- `skip_memory_metrics`: True
|
266 |
+
- `use_legacy_prediction_loop`: False
|
267 |
+
- `push_to_hub`: False
|
268 |
+
- `resume_from_checkpoint`: None
|
269 |
+
- `hub_model_id`: None
|
270 |
+
- `hub_strategy`: every_save
|
271 |
+
- `hub_private_repo`: False
|
272 |
+
- `hub_always_push`: False
|
273 |
+
- `gradient_checkpointing`: False
|
274 |
+
- `gradient_checkpointing_kwargs`: None
|
275 |
+
- `include_inputs_for_metrics`: False
|
276 |
+
- `include_for_metrics`: []
|
277 |
+
- `eval_do_concat_batches`: True
|
278 |
+
- `fp16_backend`: auto
|
279 |
+
- `push_to_hub_model_id`: None
|
280 |
+
- `push_to_hub_organization`: None
|
281 |
+
- `mp_parameters`:
|
282 |
+
- `auto_find_batch_size`: False
|
283 |
+
- `full_determinism`: False
|
284 |
+
- `torchdynamo`: None
|
285 |
+
- `ray_scope`: last
|
286 |
+
- `ddp_timeout`: 1800
|
287 |
+
- `torch_compile`: False
|
288 |
+
- `torch_compile_backend`: None
|
289 |
+
- `torch_compile_mode`: None
|
290 |
+
- `dispatch_batches`: None
|
291 |
+
- `split_batches`: None
|
292 |
+
- `include_tokens_per_second`: False
|
293 |
+
- `include_num_input_tokens_seen`: False
|
294 |
+
- `neftune_noise_alpha`: None
|
295 |
+
- `optim_target_modules`: None
|
296 |
+
- `batch_eval_metrics`: False
|
297 |
+
- `eval_on_start`: False
|
298 |
+
- `use_liger_kernel`: False
|
299 |
+
- `eval_use_gather_object`: False
|
300 |
+
- `average_tokens_across_devices`: False
|
301 |
+
- `prompts`: None
|
302 |
+
- `batch_sampler`: batch_sampler
|
303 |
+
- `multi_dataset_batch_sampler`: round_robin
|
304 |
+
|
305 |
+
</details>
|
306 |
+
|
307 |
+
### Training Logs
|
308 |
+
<details><summary>Click to expand</summary>
|
309 |
+
|
310 |
+
| Epoch | Step | Training Loss |
|
311 |
+
|:------:|:------:|:-------------:|
|
312 |
+
| 0.0046 | 500 | 0.0378 |
|
313 |
+
| 0.0092 | 1000 | 0.0047 |
|
314 |
+
| 0.0138 | 1500 | 0.006 |
|
315 |
+
| 0.0185 | 2000 | 0.0045 |
|
316 |
+
| 0.0231 | 2500 | 0.0027 |
|
317 |
+
| 0.0277 | 3000 | 0.005 |
|
318 |
+
| 0.0323 | 3500 | 0.0045 |
|
319 |
+
| 0.0369 | 4000 | 0.005 |
|
320 |
+
| 0.0415 | 4500 | 0.0066 |
|
321 |
+
| 0.0461 | 5000 | 0.0029 |
|
322 |
+
| 0.0507 | 5500 | 0.0041 |
|
323 |
+
| 0.0554 | 6000 | 0.0064 |
|
324 |
+
| 0.0600 | 6500 | 0.0044 |
|
325 |
+
| 0.0646 | 7000 | 0.0039 |
|
326 |
+
| 0.0692 | 7500 | 0.0025 |
|
327 |
+
| 0.0738 | 8000 | 0.0026 |
|
328 |
+
| 0.0784 | 8500 | 0.0036 |
|
329 |
+
| 0.0830 | 9000 | 0.0027 |
|
330 |
+
| 0.0877 | 9500 | 0.0015 |
|
331 |
+
| 0.0923 | 10000 | 0.003 |
|
332 |
+
| 0.0969 | 10500 | 0.0013 |
|
333 |
+
| 0.1015 | 11000 | 0.002 |
|
334 |
+
| 0.1061 | 11500 | 0.0038 |
|
335 |
+
| 0.1107 | 12000 | 0.0017 |
|
336 |
+
| 0.1153 | 12500 | 0.0029 |
|
337 |
+
| 0.1199 | 13000 | 0.0032 |
|
338 |
+
| 0.1246 | 13500 | 0.0036 |
|
339 |
+
| 0.1292 | 14000 | 0.004 |
|
340 |
+
| 0.1338 | 14500 | 0.0036 |
|
341 |
+
| 0.1384 | 15000 | 0.0025 |
|
342 |
+
| 0.1430 | 15500 | 0.0022 |
|
343 |
+
| 0.1476 | 16000 | 0.0017 |
|
344 |
+
| 0.1522 | 16500 | 0.0019 |
|
345 |
+
| 0.1569 | 17000 | 0.0022 |
|
346 |
+
| 0.1615 | 17500 | 0.0028 |
|
347 |
+
| 0.1661 | 18000 | 0.0033 |
|
348 |
+
| 0.1707 | 18500 | 0.0025 |
|
349 |
+
| 0.1753 | 19000 | 0.0014 |
|
350 |
+
| 0.1799 | 19500 | 0.0033 |
|
351 |
+
| 0.1845 | 20000 | 0.0023 |
|
352 |
+
| 0.1891 | 20500 | 0.0023 |
|
353 |
+
| 0.1938 | 21000 | 0.0009 |
|
354 |
+
| 0.1984 | 21500 | 0.0043 |
|
355 |
+
| 0.2030 | 22000 | 0.0021 |
|
356 |
+
| 0.2076 | 22500 | 0.0025 |
|
357 |
+
| 0.2122 | 23000 | 0.0017 |
|
358 |
+
| 0.2168 | 23500 | 0.0024 |
|
359 |
+
| 0.2214 | 24000 | 0.0021 |
|
360 |
+
| 0.2261 | 24500 | 0.0023 |
|
361 |
+
| 0.2307 | 25000 | 0.0014 |
|
362 |
+
| 0.2353 | 25500 | 0.0027 |
|
363 |
+
| 0.2399 | 26000 | 0.0025 |
|
364 |
+
| 0.2445 | 26500 | 0.0022 |
|
365 |
+
| 0.2491 | 27000 | 0.0022 |
|
366 |
+
| 0.2537 | 27500 | 0.0024 |
|
367 |
+
| 0.2583 | 28000 | 0.0035 |
|
368 |
+
| 0.2630 | 28500 | 0.0032 |
|
369 |
+
| 0.2676 | 29000 | 0.0048 |
|
370 |
+
| 0.2722 | 29500 | 0.0008 |
|
371 |
+
| 0.2768 | 30000 | 0.0027 |
|
372 |
+
| 0.2814 | 30500 | 0.004 |
|
373 |
+
| 0.2860 | 31000 | 0.0013 |
|
374 |
+
| 0.2906 | 31500 | 0.002 |
|
375 |
+
| 0.2953 | 32000 | 0.0016 |
|
376 |
+
| 0.2999 | 32500 | 0.0027 |
|
377 |
+
| 0.3045 | 33000 | 0.0014 |
|
378 |
+
| 0.3091 | 33500 | 0.0022 |
|
379 |
+
| 0.3137 | 34000 | 0.0017 |
|
380 |
+
| 0.3183 | 34500 | 0.0022 |
|
381 |
+
| 0.3229 | 35000 | 0.0026 |
|
382 |
+
| 0.3275 | 35500 | 0.003 |
|
383 |
+
| 0.3322 | 36000 | 0.0022 |
|
384 |
+
| 0.3368 | 36500 | 0.0022 |
|
385 |
+
| 0.3414 | 37000 | 0.0018 |
|
386 |
+
| 0.3460 | 37500 | 0.0028 |
|
387 |
+
| 0.3506 | 38000 | 0.0018 |
|
388 |
+
| 0.3552 | 38500 | 0.0037 |
|
389 |
+
| 0.3598 | 39000 | 0.003 |
|
390 |
+
| 0.3645 | 39500 | 0.002 |
|
391 |
+
| 0.3691 | 40000 | 0.001 |
|
392 |
+
| 0.3737 | 40500 | 0.0015 |
|
393 |
+
| 0.3783 | 41000 | 0.0023 |
|
394 |
+
| 0.3829 | 41500 | 0.0017 |
|
395 |
+
| 0.3875 | 42000 | 0.0034 |
|
396 |
+
| 0.3921 | 42500 | 0.0016 |
|
397 |
+
| 0.3967 | 43000 | 0.0019 |
|
398 |
+
| 0.4014 | 43500 | 0.0015 |
|
399 |
+
| 0.4060 | 44000 | 0.0026 |
|
400 |
+
| 0.4106 | 44500 | 0.0012 |
|
401 |
+
| 0.4152 | 45000 | 0.0014 |
|
402 |
+
| 0.4198 | 45500 | 0.0027 |
|
403 |
+
| 0.4244 | 46000 | 0.0016 |
|
404 |
+
| 0.4290 | 46500 | 0.0027 |
|
405 |
+
| 0.4337 | 47000 | 0.0033 |
|
406 |
+
| 0.4383 | 47500 | 0.0023 |
|
407 |
+
| 0.4429 | 48000 | 0.0024 |
|
408 |
+
| 0.4475 | 48500 | 0.0019 |
|
409 |
+
| 0.4521 | 49000 | 0.0017 |
|
410 |
+
| 0.4567 | 49500 | 0.004 |
|
411 |
+
| 0.4613 | 50000 | 0.0036 |
|
412 |
+
| 0.4659 | 50500 | 0.001 |
|
413 |
+
| 0.4706 | 51000 | 0.0016 |
|
414 |
+
| 0.4752 | 51500 | 0.0024 |
|
415 |
+
| 0.4798 | 52000 | 0.0009 |
|
416 |
+
| 0.4844 | 52500 | 0.0011 |
|
417 |
+
| 0.4890 | 53000 | 0.0018 |
|
418 |
+
| 0.4936 | 53500 | 0.0012 |
|
419 |
+
| 0.4982 | 54000 | 0.0012 |
|
420 |
+
| 0.5029 | 54500 | 0.0014 |
|
421 |
+
| 0.5075 | 55000 | 0.0025 |
|
422 |
+
| 0.5121 | 55500 | 0.0016 |
|
423 |
+
| 0.5167 | 56000 | 0.0015 |
|
424 |
+
| 0.5213 | 56500 | 0.002 |
|
425 |
+
| 0.5259 | 57000 | 0.0008 |
|
426 |
+
| 0.5305 | 57500 | 0.0017 |
|
427 |
+
| 0.5351 | 58000 | 0.0015 |
|
428 |
+
| 0.5398 | 58500 | 0.0009 |
|
429 |
+
| 0.5444 | 59000 | 0.0019 |
|
430 |
+
| 0.5490 | 59500 | 0.0014 |
|
431 |
+
| 0.5536 | 60000 | 0.0028 |
|
432 |
+
| 0.5582 | 60500 | 0.0014 |
|
433 |
+
| 0.5628 | 61000 | 0.0032 |
|
434 |
+
| 0.5674 | 61500 | 0.0013 |
|
435 |
+
| 0.5721 | 62000 | 0.002 |
|
436 |
+
| 0.5767 | 62500 | 0.0018 |
|
437 |
+
| 0.5813 | 63000 | 0.0015 |
|
438 |
+
| 0.5859 | 63500 | 0.0008 |
|
439 |
+
| 0.5905 | 64000 | 0.0021 |
|
440 |
+
| 0.5951 | 64500 | 0.0008 |
|
441 |
+
| 0.5997 | 65000 | 0.002 |
|
442 |
+
| 0.6043 | 65500 | 0.0023 |
|
443 |
+
| 0.6090 | 66000 | 0.0022 |
|
444 |
+
| 0.6136 | 66500 | 0.0013 |
|
445 |
+
| 0.6182 | 67000 | 0.0011 |
|
446 |
+
| 0.6228 | 67500 | 0.0014 |
|
447 |
+
| 0.6274 | 68000 | 0.0027 |
|
448 |
+
| 0.6320 | 68500 | 0.002 |
|
449 |
+
| 0.6366 | 69000 | 0.0013 |
|
450 |
+
| 0.6413 | 69500 | 0.0026 |
|
451 |
+
| 0.6459 | 70000 | 0.0014 |
|
452 |
+
| 0.6505 | 70500 | 0.0017 |
|
453 |
+
| 0.6551 | 71000 | 0.0023 |
|
454 |
+
| 0.6597 | 71500 | 0.0025 |
|
455 |
+
| 0.6643 | 72000 | 0.0013 |
|
456 |
+
| 0.6689 | 72500 | 0.0008 |
|
457 |
+
| 0.6735 | 73000 | 0.0017 |
|
458 |
+
| 0.6782 | 73500 | 0.0022 |
|
459 |
+
| 0.6828 | 74000 | 0.0021 |
|
460 |
+
| 0.6874 | 74500 | 0.0008 |
|
461 |
+
| 0.6920 | 75000 | 0.0007 |
|
462 |
+
| 0.6966 | 75500 | 0.0038 |
|
463 |
+
| 0.7012 | 76000 | 0.0011 |
|
464 |
+
| 0.7058 | 76500 | 0.0016 |
|
465 |
+
| 0.7105 | 77000 | 0.0013 |
|
466 |
+
| 0.7151 | 77500 | 0.0042 |
|
467 |
+
| 0.7197 | 78000 | 0.0009 |
|
468 |
+
| 0.7243 | 78500 | 0.0004 |
|
469 |
+
| 0.7289 | 79000 | 0.0006 |
|
470 |
+
| 0.7335 | 79500 | 0.0007 |
|
471 |
+
| 0.7381 | 80000 | 0.0014 |
|
472 |
+
| 0.7428 | 80500 | 0.002 |
|
473 |
+
| 0.7474 | 81000 | 0.0017 |
|
474 |
+
| 0.7520 | 81500 | 0.0014 |
|
475 |
+
| 0.7566 | 82000 | 0.0015 |
|
476 |
+
| 0.7612 | 82500 | 0.0013 |
|
477 |
+
| 0.7658 | 83000 | 0.001 |
|
478 |
+
| 0.7704 | 83500 | 0.0019 |
|
479 |
+
| 0.7750 | 84000 | 0.0009 |
|
480 |
+
| 0.7797 | 84500 | 0.0021 |
|
481 |
+
| 0.7843 | 85000 | 0.0015 |
|
482 |
+
| 0.7889 | 85500 | 0.001 |
|
483 |
+
| 0.7935 | 86000 | 0.0008 |
|
484 |
+
| 0.7981 | 86500 | 0.0039 |
|
485 |
+
| 0.8027 | 87000 | 0.0018 |
|
486 |
+
| 0.8073 | 87500 | 0.0009 |
|
487 |
+
| 0.8120 | 88000 | 0.0018 |
|
488 |
+
| 0.8166 | 88500 | 0.0008 |
|
489 |
+
| 0.8212 | 89000 | 0.0007 |
|
490 |
+
| 0.8258 | 89500 | 0.0009 |
|
491 |
+
| 0.8304 | 90000 | 0.002 |
|
492 |
+
| 0.8350 | 90500 | 0.001 |
|
493 |
+
| 0.8396 | 91000 | 0.0007 |
|
494 |
+
| 0.8442 | 91500 | 0.0008 |
|
495 |
+
| 0.8489 | 92000 | 0.0021 |
|
496 |
+
| 0.8535 | 92500 | 0.0013 |
|
497 |
+
| 0.8581 | 93000 | 0.0009 |
|
498 |
+
| 0.8627 | 93500 | 0.002 |
|
499 |
+
| 0.8673 | 94000 | 0.0012 |
|
500 |
+
| 0.8719 | 94500 | 0.0034 |
|
501 |
+
| 0.8765 | 95000 | 0.0027 |
|
502 |
+
| 0.8812 | 95500 | 0.0006 |
|
503 |
+
| 0.8858 | 96000 | 0.002 |
|
504 |
+
| 0.8904 | 96500 | 0.0005 |
|
505 |
+
| 0.8950 | 97000 | 0.0009 |
|
506 |
+
| 0.8996 | 97500 | 0.0007 |
|
507 |
+
| 0.9042 | 98000 | 0.0015 |
|
508 |
+
| 0.9088 | 98500 | 0.0006 |
|
509 |
+
| 0.9134 | 99000 | 0.0004 |
|
510 |
+
| 0.9181 | 99500 | 0.0006 |
|
511 |
+
| 0.9227 | 100000 | 0.0031 |
|
512 |
+
| 0.9273 | 100500 | 0.0013 |
|
513 |
+
| 0.9319 | 101000 | 0.0024 |
|
514 |
+
| 0.9365 | 101500 | 0.0006 |
|
515 |
+
| 0.9411 | 102000 | 0.0017 |
|
516 |
+
| 0.9457 | 102500 | 0.0007 |
|
517 |
+
| 0.9504 | 103000 | 0.0012 |
|
518 |
+
| 0.9550 | 103500 | 0.0011 |
|
519 |
+
| 0.9596 | 104000 | 0.0007 |
|
520 |
+
| 0.9642 | 104500 | 0.0004 |
|
521 |
+
| 0.9688 | 105000 | 0.0021 |
|
522 |
+
| 0.9734 | 105500 | 0.0027 |
|
523 |
+
| 0.9780 | 106000 | 0.0016 |
|
524 |
+
| 0.9826 | 106500 | 0.0022 |
|
525 |
+
| 0.9873 | 107000 | 0.0017 |
|
526 |
+
| 0.9919 | 107500 | 0.0009 |
|
527 |
+
| 0.9965 | 108000 | 0.0008 |
|
528 |
+
|
529 |
+
</details>
|
530 |
+
|
531 |
+
### Framework Versions
|
532 |
+
- Python: 3.10.12
|
533 |
+
- Sentence Transformers: 3.3.0
|
534 |
+
- Transformers: 4.46.3
|
535 |
+
- PyTorch: 2.5.1+cu124
|
536 |
+
- Accelerate: 1.1.1
|
537 |
+
- Datasets: 3.1.0
|
538 |
+
- Tokenizers: 0.20.3
|
539 |
+
|
540 |
+
## Citation
|
541 |
+
|
542 |
+
### BibTeX
|
543 |
+
|
544 |
+
#### Sentence Transformers
|
545 |
+
```bibtex
|
546 |
+
@inproceedings{reimers-2019-sentence-bert,
|
547 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
548 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
549 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
550 |
+
month = "11",
|
551 |
+
year = "2019",
|
552 |
+
publisher = "Association for Computational Linguistics",
|
553 |
+
url = "https://arxiv.org/abs/1908.10084",
|
554 |
+
}
|
555 |
+
```
|
556 |
+
|
557 |
+
#### MultipleNegativesRankingLoss
|
558 |
+
```bibtex
|
559 |
+
@misc{henderson2017efficient,
|
560 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
561 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
562 |
+
year={2017},
|
563 |
+
eprint={1705.00652},
|
564 |
+
archivePrefix={arXiv},
|
565 |
+
primaryClass={cs.CL}
|
566 |
+
}
|
567 |
+
```
|
568 |
+
|
569 |
+
<!--
|
570 |
+
## Glossary
|
571 |
+
|
572 |
+
*Clearly define terms in order to be accessible across audiences.*
|
573 |
+
-->
|
574 |
+
|
575 |
+
<!--
|
576 |
+
## Model Card Authors
|
577 |
+
|
578 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
579 |
+
-->
|
580 |
+
|
581 |
+
<!--
|
582 |
+
## Model Card Contact
|
583 |
+
|
584 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
585 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "intfloat/multilingual-e5-small",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 384,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 1536,
|
13 |
+
"layer_norm_eps": 1e-12,
|
14 |
+
"max_position_embeddings": 512,
|
15 |
+
"model_type": "bert",
|
16 |
+
"num_attention_heads": 12,
|
17 |
+
"num_hidden_layers": 12,
|
18 |
+
"pad_token_id": 0,
|
19 |
+
"position_embedding_type": "absolute",
|
20 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.46.3",
|
23 |
+
"type_vocab_size": 2,
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 250037
|
26 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.3.0",
|
4 |
+
"transformers": "4.46.3",
|
5 |
+
"pytorch": "2.5.1+cu124"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:942c83794ae8938f752c87d72664976ea2b516bf0c9532f89c51e2cc1f08a9d3
|
3 |
+
size 470637416
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
3 |
+
size 5069051
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ef04f2b385d1514f500e779207ace0f53e30895ce37563179e29f4022d28ca38
|
3 |
+
size 17083053
|
tokenizer_config.json
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"eos_token": "</s>",
|
48 |
+
"mask_token": "<mask>",
|
49 |
+
"model_max_length": 512,
|
50 |
+
"pad_token": "<pad>",
|
51 |
+
"sep_token": "</s>",
|
52 |
+
"sp_model_kwargs": {},
|
53 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
54 |
+
"unk_token": "<unk>"
|
55 |
+
}
|