agentlans commited on
Commit
fcc77fe
1 Parent(s): d82a87a

Upload 11 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,585 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: intfloat/multilingual-e5-small
3
+ library_name: sentence-transformers
4
+ pipeline_tag: sentence-similarity
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:867042
11
+ - loss:MultipleNegativesRankingLoss
12
+ widget:
13
+ - source_sentence: An air strike.
14
+ sentences:
15
+ - מר פרקינסון היה מזועזע אם היה יודע איך מר פוקס מתנהג.
16
+ - 'Sonia: Jangan berkata begitu.'
17
+ - En luftattack.
18
+ - source_sentence: The European Parliament has recently called for a guarantee that
19
+ 40 % of the 10 % target will come from sources that do not compete with food production.
20
+ sentences:
21
+ - L' ordre du jour appelle l' examen du projet définitif d' ordre du jour tel qu'
22
+ il a été établi par la Conférence des présidents, le jeudi 13 janvier, conformément
23
+ à l' article 110 du règlement.
24
+ - می توانم با تمام وجود به این باور داشته باشم؟ می توانم در این باره چنین خشمگین
25
+ باشم؟"
26
+ - Europaparlamentet ba nylig om en garanti for at 40 % av de 10 % kommer fra kilder
27
+ som ikke konkurrerer med matvareproduksjon.
28
+ - source_sentence: In effect, this adds to the length of the workday and to its tensions.
29
+ sentences:
30
+ - Musimy wysłuchać opinii zainteresowanych stron, które rozwiązanie jest najatrakcyjniejsze
31
+ dla spółek.
32
+ - Вам надо держать себя в руках.
33
+ - درحقیقت ،‏ یہ دن‌بھر کے کام اور اس سے وابستہ دباؤ میں اضافہ کرتا ہے ۔‏
34
+ - source_sentence: A few HIV positive mothers NOT in their first pregnancy (one was
35
+ in her ninth).
36
+ sentences:
37
+ - Beberapa ibu mengidap HIV positif TIDAK di kehamilan pertama mereka (salah satunya
38
+ bahkan di kehamilan kesembilan).
39
+ - Taigi, manau, kad taip ir pristatysiu jus – kaip pasakorę".
40
+ - הוא איפשר ראייה לשני מיליון אנשים ללא תשלום.
41
+ - source_sentence: What do they think it is that prevents the products of human ingenuity
42
+ from being themselves, fruits of the tree of life, and hence, in some sense, obeying
43
+ evolutionary rules?
44
+ sentences:
45
+ - 'Կարծում եք ի՞նչն է խանգարում, որ մարդկային հնարամտության արդյունքները իրենք էլ
46
+ լինեն կյանքի ծառի պտուղներ և այդպիսով ինչ-որ իմաստով ենթարկվեն էվոլուցիայի կանոններին:'
47
+ - Ja mēs varētu aktivēt šūnas, mēs varētu redzēt, kādus spēkus tās var atbrīvot,
48
+ ko tās var ierosināt un ko stiprināt. Ja mēs tās varētu izslēgt,
49
+ - (Smiech) No dobre, idem do Ameriky.
50
+ ---
51
+
52
+ # SentenceTransformer based on intfloat/multilingual-e5-small
53
+
54
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
55
+
56
+ ## Model Details
57
+
58
+ ### Model Description
59
+ - **Model Type:** Sentence Transformer
60
+ - **Base model:** [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) <!-- at revision fd1525a9fd15316a2d503bf26ab031a61d056e98 -->
61
+ - **Maximum Sequence Length:** 512 tokens
62
+ - **Output Dimensionality:** 384 dimensions
63
+ - **Similarity Function:** Cosine Similarity
64
+ <!-- - **Training Dataset:** Unknown -->
65
+ <!-- - **Language:** Unknown -->
66
+ <!-- - **License:** Unknown -->
67
+
68
+ ### Model Sources
69
+
70
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
71
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
72
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
73
+
74
+ ### Full Model Architecture
75
+
76
+ ```
77
+ SentenceTransformer(
78
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
79
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
80
+ (2): Normalize()
81
+ )
82
+ ```
83
+
84
+ ## Usage
85
+
86
+ ### Direct Usage (Sentence Transformers)
87
+
88
+ First install the Sentence Transformers library:
89
+
90
+ ```bash
91
+ pip install -U sentence-transformers
92
+ ```
93
+
94
+ Then you can load this model and run inference.
95
+ ```python
96
+ from sentence_transformers import SentenceTransformer
97
+
98
+ # Download from the 🤗 Hub
99
+ model = SentenceTransformer("sentence_transformers_model_id")
100
+ # Run inference
101
+ sentences = [
102
+ 'What do they think it is that prevents the products of human ingenuity from being themselves, fruits of the tree of life, and hence, in some sense, obeying evolutionary rules?',
103
+ 'Կարծում եք ի՞նչն է խանգարում, որ մարդկային հնարամտության արդյունքները իրենք էլ լինեն կյանքի ծառի պտուղներ և այդպիսով ինչ-որ իմաստով ենթարկվեն էվոլուցիայի կանոններին:',
104
+ '(Smiech) No dobre, idem do Ameriky.',
105
+ ]
106
+ embeddings = model.encode(sentences)
107
+ print(embeddings.shape)
108
+ # [3, 384]
109
+
110
+ # Get the similarity scores for the embeddings
111
+ similarities = model.similarity(embeddings, embeddings)
112
+ print(similarities.shape)
113
+ # [3, 3]
114
+ ```
115
+
116
+ <!--
117
+ ### Direct Usage (Transformers)
118
+
119
+ <details><summary>Click to see the direct usage in Transformers</summary>
120
+
121
+ </details>
122
+ -->
123
+
124
+ <!--
125
+ ### Downstream Usage (Sentence Transformers)
126
+
127
+ You can finetune this model on your own dataset.
128
+
129
+ <details><summary>Click to expand</summary>
130
+
131
+ </details>
132
+ -->
133
+
134
+ <!--
135
+ ### Out-of-Scope Use
136
+
137
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
138
+ -->
139
+
140
+ <!--
141
+ ## Bias, Risks and Limitations
142
+
143
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
144
+ -->
145
+
146
+ <!--
147
+ ### Recommendations
148
+
149
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
150
+ -->
151
+
152
+ ## Training Details
153
+
154
+ ### Training Dataset
155
+
156
+ #### Unnamed Dataset
157
+
158
+
159
+ * Size: 867,042 training samples
160
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
161
+ * Approximate statistics based on the first 1000 samples:
162
+ | | sentence_0 | sentence_1 |
163
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
164
+ | type | string | string |
165
+ | details | <ul><li>min: 3 tokens</li><li>mean: 21.83 tokens</li><li>max: 177 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 24.92 tokens</li><li>max: 229 tokens</li></ul> |
166
+ * Samples:
167
+ | sentence_0 | sentence_1 |
168
+ |:------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------|
169
+ | <code>I like English best of all subjects.</code> | <code>Tykkään englannista eniten kaikista aineista.</code> |
170
+ | <code>We shall offer negotiations. Quite right.</code> | <code>- Oferecer-nos-emos para negociar.</code> |
171
+ | <code>It was soon learned that Zelaya had been taken to Costa Rica, where he continued to call himself as the legal head of state.</code> | <code>Al snel werd bekend dat Zelaya naar Costa Rica was overgebracht, waar hij zich nog steeds het officiële staatshoofd noemde.</code> |
172
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
173
+ ```json
174
+ {
175
+ "scale": 20.0,
176
+ "similarity_fct": "cos_sim"
177
+ }
178
+ ```
179
+
180
+ ### Training Hyperparameters
181
+ #### Non-Default Hyperparameters
182
+
183
+ - `num_train_epochs`: 1
184
+ - `multi_dataset_batch_sampler`: round_robin
185
+
186
+ #### All Hyperparameters
187
+ <details><summary>Click to expand</summary>
188
+
189
+ - `overwrite_output_dir`: False
190
+ - `do_predict`: False
191
+ - `eval_strategy`: no
192
+ - `prediction_loss_only`: True
193
+ - `per_device_train_batch_size`: 8
194
+ - `per_device_eval_batch_size`: 8
195
+ - `per_gpu_train_batch_size`: None
196
+ - `per_gpu_eval_batch_size`: None
197
+ - `gradient_accumulation_steps`: 1
198
+ - `eval_accumulation_steps`: None
199
+ - `torch_empty_cache_steps`: None
200
+ - `learning_rate`: 5e-05
201
+ - `weight_decay`: 0.0
202
+ - `adam_beta1`: 0.9
203
+ - `adam_beta2`: 0.999
204
+ - `adam_epsilon`: 1e-08
205
+ - `max_grad_norm`: 1
206
+ - `num_train_epochs`: 1
207
+ - `max_steps`: -1
208
+ - `lr_scheduler_type`: linear
209
+ - `lr_scheduler_kwargs`: {}
210
+ - `warmup_ratio`: 0.0
211
+ - `warmup_steps`: 0
212
+ - `log_level`: passive
213
+ - `log_level_replica`: warning
214
+ - `log_on_each_node`: True
215
+ - `logging_nan_inf_filter`: True
216
+ - `save_safetensors`: True
217
+ - `save_on_each_node`: False
218
+ - `save_only_model`: False
219
+ - `restore_callback_states_from_checkpoint`: False
220
+ - `no_cuda`: False
221
+ - `use_cpu`: False
222
+ - `use_mps_device`: False
223
+ - `seed`: 42
224
+ - `data_seed`: None
225
+ - `jit_mode_eval`: False
226
+ - `use_ipex`: False
227
+ - `bf16`: False
228
+ - `fp16`: False
229
+ - `fp16_opt_level`: O1
230
+ - `half_precision_backend`: auto
231
+ - `bf16_full_eval`: False
232
+ - `fp16_full_eval`: False
233
+ - `tf32`: None
234
+ - `local_rank`: 0
235
+ - `ddp_backend`: None
236
+ - `tpu_num_cores`: None
237
+ - `tpu_metrics_debug`: False
238
+ - `debug`: []
239
+ - `dataloader_drop_last`: False
240
+ - `dataloader_num_workers`: 0
241
+ - `dataloader_prefetch_factor`: None
242
+ - `past_index`: -1
243
+ - `disable_tqdm`: False
244
+ - `remove_unused_columns`: True
245
+ - `label_names`: None
246
+ - `load_best_model_at_end`: False
247
+ - `ignore_data_skip`: False
248
+ - `fsdp`: []
249
+ - `fsdp_min_num_params`: 0
250
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
251
+ - `fsdp_transformer_layer_cls_to_wrap`: None
252
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
253
+ - `deepspeed`: None
254
+ - `label_smoothing_factor`: 0.0
255
+ - `optim`: adamw_torch
256
+ - `optim_args`: None
257
+ - `adafactor`: False
258
+ - `group_by_length`: False
259
+ - `length_column_name`: length
260
+ - `ddp_find_unused_parameters`: None
261
+ - `ddp_bucket_cap_mb`: None
262
+ - `ddp_broadcast_buffers`: False
263
+ - `dataloader_pin_memory`: True
264
+ - `dataloader_persistent_workers`: False
265
+ - `skip_memory_metrics`: True
266
+ - `use_legacy_prediction_loop`: False
267
+ - `push_to_hub`: False
268
+ - `resume_from_checkpoint`: None
269
+ - `hub_model_id`: None
270
+ - `hub_strategy`: every_save
271
+ - `hub_private_repo`: False
272
+ - `hub_always_push`: False
273
+ - `gradient_checkpointing`: False
274
+ - `gradient_checkpointing_kwargs`: None
275
+ - `include_inputs_for_metrics`: False
276
+ - `include_for_metrics`: []
277
+ - `eval_do_concat_batches`: True
278
+ - `fp16_backend`: auto
279
+ - `push_to_hub_model_id`: None
280
+ - `push_to_hub_organization`: None
281
+ - `mp_parameters`:
282
+ - `auto_find_batch_size`: False
283
+ - `full_determinism`: False
284
+ - `torchdynamo`: None
285
+ - `ray_scope`: last
286
+ - `ddp_timeout`: 1800
287
+ - `torch_compile`: False
288
+ - `torch_compile_backend`: None
289
+ - `torch_compile_mode`: None
290
+ - `dispatch_batches`: None
291
+ - `split_batches`: None
292
+ - `include_tokens_per_second`: False
293
+ - `include_num_input_tokens_seen`: False
294
+ - `neftune_noise_alpha`: None
295
+ - `optim_target_modules`: None
296
+ - `batch_eval_metrics`: False
297
+ - `eval_on_start`: False
298
+ - `use_liger_kernel`: False
299
+ - `eval_use_gather_object`: False
300
+ - `average_tokens_across_devices`: False
301
+ - `prompts`: None
302
+ - `batch_sampler`: batch_sampler
303
+ - `multi_dataset_batch_sampler`: round_robin
304
+
305
+ </details>
306
+
307
+ ### Training Logs
308
+ <details><summary>Click to expand</summary>
309
+
310
+ | Epoch | Step | Training Loss |
311
+ |:------:|:------:|:-------------:|
312
+ | 0.0046 | 500 | 0.0378 |
313
+ | 0.0092 | 1000 | 0.0047 |
314
+ | 0.0138 | 1500 | 0.006 |
315
+ | 0.0185 | 2000 | 0.0045 |
316
+ | 0.0231 | 2500 | 0.0027 |
317
+ | 0.0277 | 3000 | 0.005 |
318
+ | 0.0323 | 3500 | 0.0045 |
319
+ | 0.0369 | 4000 | 0.005 |
320
+ | 0.0415 | 4500 | 0.0066 |
321
+ | 0.0461 | 5000 | 0.0029 |
322
+ | 0.0507 | 5500 | 0.0041 |
323
+ | 0.0554 | 6000 | 0.0064 |
324
+ | 0.0600 | 6500 | 0.0044 |
325
+ | 0.0646 | 7000 | 0.0039 |
326
+ | 0.0692 | 7500 | 0.0025 |
327
+ | 0.0738 | 8000 | 0.0026 |
328
+ | 0.0784 | 8500 | 0.0036 |
329
+ | 0.0830 | 9000 | 0.0027 |
330
+ | 0.0877 | 9500 | 0.0015 |
331
+ | 0.0923 | 10000 | 0.003 |
332
+ | 0.0969 | 10500 | 0.0013 |
333
+ | 0.1015 | 11000 | 0.002 |
334
+ | 0.1061 | 11500 | 0.0038 |
335
+ | 0.1107 | 12000 | 0.0017 |
336
+ | 0.1153 | 12500 | 0.0029 |
337
+ | 0.1199 | 13000 | 0.0032 |
338
+ | 0.1246 | 13500 | 0.0036 |
339
+ | 0.1292 | 14000 | 0.004 |
340
+ | 0.1338 | 14500 | 0.0036 |
341
+ | 0.1384 | 15000 | 0.0025 |
342
+ | 0.1430 | 15500 | 0.0022 |
343
+ | 0.1476 | 16000 | 0.0017 |
344
+ | 0.1522 | 16500 | 0.0019 |
345
+ | 0.1569 | 17000 | 0.0022 |
346
+ | 0.1615 | 17500 | 0.0028 |
347
+ | 0.1661 | 18000 | 0.0033 |
348
+ | 0.1707 | 18500 | 0.0025 |
349
+ | 0.1753 | 19000 | 0.0014 |
350
+ | 0.1799 | 19500 | 0.0033 |
351
+ | 0.1845 | 20000 | 0.0023 |
352
+ | 0.1891 | 20500 | 0.0023 |
353
+ | 0.1938 | 21000 | 0.0009 |
354
+ | 0.1984 | 21500 | 0.0043 |
355
+ | 0.2030 | 22000 | 0.0021 |
356
+ | 0.2076 | 22500 | 0.0025 |
357
+ | 0.2122 | 23000 | 0.0017 |
358
+ | 0.2168 | 23500 | 0.0024 |
359
+ | 0.2214 | 24000 | 0.0021 |
360
+ | 0.2261 | 24500 | 0.0023 |
361
+ | 0.2307 | 25000 | 0.0014 |
362
+ | 0.2353 | 25500 | 0.0027 |
363
+ | 0.2399 | 26000 | 0.0025 |
364
+ | 0.2445 | 26500 | 0.0022 |
365
+ | 0.2491 | 27000 | 0.0022 |
366
+ | 0.2537 | 27500 | 0.0024 |
367
+ | 0.2583 | 28000 | 0.0035 |
368
+ | 0.2630 | 28500 | 0.0032 |
369
+ | 0.2676 | 29000 | 0.0048 |
370
+ | 0.2722 | 29500 | 0.0008 |
371
+ | 0.2768 | 30000 | 0.0027 |
372
+ | 0.2814 | 30500 | 0.004 |
373
+ | 0.2860 | 31000 | 0.0013 |
374
+ | 0.2906 | 31500 | 0.002 |
375
+ | 0.2953 | 32000 | 0.0016 |
376
+ | 0.2999 | 32500 | 0.0027 |
377
+ | 0.3045 | 33000 | 0.0014 |
378
+ | 0.3091 | 33500 | 0.0022 |
379
+ | 0.3137 | 34000 | 0.0017 |
380
+ | 0.3183 | 34500 | 0.0022 |
381
+ | 0.3229 | 35000 | 0.0026 |
382
+ | 0.3275 | 35500 | 0.003 |
383
+ | 0.3322 | 36000 | 0.0022 |
384
+ | 0.3368 | 36500 | 0.0022 |
385
+ | 0.3414 | 37000 | 0.0018 |
386
+ | 0.3460 | 37500 | 0.0028 |
387
+ | 0.3506 | 38000 | 0.0018 |
388
+ | 0.3552 | 38500 | 0.0037 |
389
+ | 0.3598 | 39000 | 0.003 |
390
+ | 0.3645 | 39500 | 0.002 |
391
+ | 0.3691 | 40000 | 0.001 |
392
+ | 0.3737 | 40500 | 0.0015 |
393
+ | 0.3783 | 41000 | 0.0023 |
394
+ | 0.3829 | 41500 | 0.0017 |
395
+ | 0.3875 | 42000 | 0.0034 |
396
+ | 0.3921 | 42500 | 0.0016 |
397
+ | 0.3967 | 43000 | 0.0019 |
398
+ | 0.4014 | 43500 | 0.0015 |
399
+ | 0.4060 | 44000 | 0.0026 |
400
+ | 0.4106 | 44500 | 0.0012 |
401
+ | 0.4152 | 45000 | 0.0014 |
402
+ | 0.4198 | 45500 | 0.0027 |
403
+ | 0.4244 | 46000 | 0.0016 |
404
+ | 0.4290 | 46500 | 0.0027 |
405
+ | 0.4337 | 47000 | 0.0033 |
406
+ | 0.4383 | 47500 | 0.0023 |
407
+ | 0.4429 | 48000 | 0.0024 |
408
+ | 0.4475 | 48500 | 0.0019 |
409
+ | 0.4521 | 49000 | 0.0017 |
410
+ | 0.4567 | 49500 | 0.004 |
411
+ | 0.4613 | 50000 | 0.0036 |
412
+ | 0.4659 | 50500 | 0.001 |
413
+ | 0.4706 | 51000 | 0.0016 |
414
+ | 0.4752 | 51500 | 0.0024 |
415
+ | 0.4798 | 52000 | 0.0009 |
416
+ | 0.4844 | 52500 | 0.0011 |
417
+ | 0.4890 | 53000 | 0.0018 |
418
+ | 0.4936 | 53500 | 0.0012 |
419
+ | 0.4982 | 54000 | 0.0012 |
420
+ | 0.5029 | 54500 | 0.0014 |
421
+ | 0.5075 | 55000 | 0.0025 |
422
+ | 0.5121 | 55500 | 0.0016 |
423
+ | 0.5167 | 56000 | 0.0015 |
424
+ | 0.5213 | 56500 | 0.002 |
425
+ | 0.5259 | 57000 | 0.0008 |
426
+ | 0.5305 | 57500 | 0.0017 |
427
+ | 0.5351 | 58000 | 0.0015 |
428
+ | 0.5398 | 58500 | 0.0009 |
429
+ | 0.5444 | 59000 | 0.0019 |
430
+ | 0.5490 | 59500 | 0.0014 |
431
+ | 0.5536 | 60000 | 0.0028 |
432
+ | 0.5582 | 60500 | 0.0014 |
433
+ | 0.5628 | 61000 | 0.0032 |
434
+ | 0.5674 | 61500 | 0.0013 |
435
+ | 0.5721 | 62000 | 0.002 |
436
+ | 0.5767 | 62500 | 0.0018 |
437
+ | 0.5813 | 63000 | 0.0015 |
438
+ | 0.5859 | 63500 | 0.0008 |
439
+ | 0.5905 | 64000 | 0.0021 |
440
+ | 0.5951 | 64500 | 0.0008 |
441
+ | 0.5997 | 65000 | 0.002 |
442
+ | 0.6043 | 65500 | 0.0023 |
443
+ | 0.6090 | 66000 | 0.0022 |
444
+ | 0.6136 | 66500 | 0.0013 |
445
+ | 0.6182 | 67000 | 0.0011 |
446
+ | 0.6228 | 67500 | 0.0014 |
447
+ | 0.6274 | 68000 | 0.0027 |
448
+ | 0.6320 | 68500 | 0.002 |
449
+ | 0.6366 | 69000 | 0.0013 |
450
+ | 0.6413 | 69500 | 0.0026 |
451
+ | 0.6459 | 70000 | 0.0014 |
452
+ | 0.6505 | 70500 | 0.0017 |
453
+ | 0.6551 | 71000 | 0.0023 |
454
+ | 0.6597 | 71500 | 0.0025 |
455
+ | 0.6643 | 72000 | 0.0013 |
456
+ | 0.6689 | 72500 | 0.0008 |
457
+ | 0.6735 | 73000 | 0.0017 |
458
+ | 0.6782 | 73500 | 0.0022 |
459
+ | 0.6828 | 74000 | 0.0021 |
460
+ | 0.6874 | 74500 | 0.0008 |
461
+ | 0.6920 | 75000 | 0.0007 |
462
+ | 0.6966 | 75500 | 0.0038 |
463
+ | 0.7012 | 76000 | 0.0011 |
464
+ | 0.7058 | 76500 | 0.0016 |
465
+ | 0.7105 | 77000 | 0.0013 |
466
+ | 0.7151 | 77500 | 0.0042 |
467
+ | 0.7197 | 78000 | 0.0009 |
468
+ | 0.7243 | 78500 | 0.0004 |
469
+ | 0.7289 | 79000 | 0.0006 |
470
+ | 0.7335 | 79500 | 0.0007 |
471
+ | 0.7381 | 80000 | 0.0014 |
472
+ | 0.7428 | 80500 | 0.002 |
473
+ | 0.7474 | 81000 | 0.0017 |
474
+ | 0.7520 | 81500 | 0.0014 |
475
+ | 0.7566 | 82000 | 0.0015 |
476
+ | 0.7612 | 82500 | 0.0013 |
477
+ | 0.7658 | 83000 | 0.001 |
478
+ | 0.7704 | 83500 | 0.0019 |
479
+ | 0.7750 | 84000 | 0.0009 |
480
+ | 0.7797 | 84500 | 0.0021 |
481
+ | 0.7843 | 85000 | 0.0015 |
482
+ | 0.7889 | 85500 | 0.001 |
483
+ | 0.7935 | 86000 | 0.0008 |
484
+ | 0.7981 | 86500 | 0.0039 |
485
+ | 0.8027 | 87000 | 0.0018 |
486
+ | 0.8073 | 87500 | 0.0009 |
487
+ | 0.8120 | 88000 | 0.0018 |
488
+ | 0.8166 | 88500 | 0.0008 |
489
+ | 0.8212 | 89000 | 0.0007 |
490
+ | 0.8258 | 89500 | 0.0009 |
491
+ | 0.8304 | 90000 | 0.002 |
492
+ | 0.8350 | 90500 | 0.001 |
493
+ | 0.8396 | 91000 | 0.0007 |
494
+ | 0.8442 | 91500 | 0.0008 |
495
+ | 0.8489 | 92000 | 0.0021 |
496
+ | 0.8535 | 92500 | 0.0013 |
497
+ | 0.8581 | 93000 | 0.0009 |
498
+ | 0.8627 | 93500 | 0.002 |
499
+ | 0.8673 | 94000 | 0.0012 |
500
+ | 0.8719 | 94500 | 0.0034 |
501
+ | 0.8765 | 95000 | 0.0027 |
502
+ | 0.8812 | 95500 | 0.0006 |
503
+ | 0.8858 | 96000 | 0.002 |
504
+ | 0.8904 | 96500 | 0.0005 |
505
+ | 0.8950 | 97000 | 0.0009 |
506
+ | 0.8996 | 97500 | 0.0007 |
507
+ | 0.9042 | 98000 | 0.0015 |
508
+ | 0.9088 | 98500 | 0.0006 |
509
+ | 0.9134 | 99000 | 0.0004 |
510
+ | 0.9181 | 99500 | 0.0006 |
511
+ | 0.9227 | 100000 | 0.0031 |
512
+ | 0.9273 | 100500 | 0.0013 |
513
+ | 0.9319 | 101000 | 0.0024 |
514
+ | 0.9365 | 101500 | 0.0006 |
515
+ | 0.9411 | 102000 | 0.0017 |
516
+ | 0.9457 | 102500 | 0.0007 |
517
+ | 0.9504 | 103000 | 0.0012 |
518
+ | 0.9550 | 103500 | 0.0011 |
519
+ | 0.9596 | 104000 | 0.0007 |
520
+ | 0.9642 | 104500 | 0.0004 |
521
+ | 0.9688 | 105000 | 0.0021 |
522
+ | 0.9734 | 105500 | 0.0027 |
523
+ | 0.9780 | 106000 | 0.0016 |
524
+ | 0.9826 | 106500 | 0.0022 |
525
+ | 0.9873 | 107000 | 0.0017 |
526
+ | 0.9919 | 107500 | 0.0009 |
527
+ | 0.9965 | 108000 | 0.0008 |
528
+
529
+ </details>
530
+
531
+ ### Framework Versions
532
+ - Python: 3.10.12
533
+ - Sentence Transformers: 3.3.0
534
+ - Transformers: 4.46.3
535
+ - PyTorch: 2.5.1+cu124
536
+ - Accelerate: 1.1.1
537
+ - Datasets: 3.1.0
538
+ - Tokenizers: 0.20.3
539
+
540
+ ## Citation
541
+
542
+ ### BibTeX
543
+
544
+ #### Sentence Transformers
545
+ ```bibtex
546
+ @inproceedings{reimers-2019-sentence-bert,
547
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
548
+ author = "Reimers, Nils and Gurevych, Iryna",
549
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
550
+ month = "11",
551
+ year = "2019",
552
+ publisher = "Association for Computational Linguistics",
553
+ url = "https://arxiv.org/abs/1908.10084",
554
+ }
555
+ ```
556
+
557
+ #### MultipleNegativesRankingLoss
558
+ ```bibtex
559
+ @misc{henderson2017efficient,
560
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
561
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
562
+ year={2017},
563
+ eprint={1705.00652},
564
+ archivePrefix={arXiv},
565
+ primaryClass={cs.CL}
566
+ }
567
+ ```
568
+
569
+ <!--
570
+ ## Glossary
571
+
572
+ *Clearly define terms in order to be accessible across audiences.*
573
+ -->
574
+
575
+ <!--
576
+ ## Model Card Authors
577
+
578
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
579
+ -->
580
+
581
+ <!--
582
+ ## Model Card Contact
583
+
584
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
585
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "intfloat/multilingual-e5-small",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 1536,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "tokenizer_class": "XLMRobertaTokenizer",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.46.3",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 250037
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.0",
4
+ "transformers": "4.46.3",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:942c83794ae8938f752c87d72664976ea2b516bf0c9532f89c51e2cc1f08a9d3
3
+ size 470637416
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef04f2b385d1514f500e779207ace0f53e30895ce37563179e29f4022d28ca38
3
+ size 17083053
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "model_max_length": 512,
50
+ "pad_token": "<pad>",
51
+ "sep_token": "</s>",
52
+ "sp_model_kwargs": {},
53
+ "tokenizer_class": "XLMRobertaTokenizer",
54
+ "unk_token": "<unk>"
55
+ }