File size: 1,390 Bytes
12831ef 2c5a8ce 12831ef 2c5a8ce 8777589 12831ef 2c5a8ce 8777589 2c5a8ce 7347c38 8777589 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
---
language:
- am
license: mit
tags:
- automatic-speech-recognition
- speech
metrics:
- wer
- cer
pipeline_tag: automatic-speech-recognition
---
# Amharic ASR using fine-tuned Wav2vec2 XLSR-53
This is a finetuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) trained on the [Amharic Speech Corpus](http://www.openslr.org/25/). This corpus was produced by [Abate et al. (2005)](https://www.isca-speech.org/archive/interspeech_2005/abate05_interspeech.html) (10.21437/Interspeech.2005-467).
The model achieves a WER of 26% and a CER of 7% on the validation set of the Amharic Readspeech data.
## Usage
The model can be used as follows:
```python
import librosa
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
model = Wav2Vec2ForCTC.from_pretrained("agkphysics/wav2vec2-large-xlsr-53-amharic")
processor = Wav2Vec2Processor.from_pretrained("agkphysics/wav2vec2-large-xlsr-53-amharic")
audio, _ = librosa.load("/path/to/audio.wav", sr=16000)
input_values = processor(
audio.squeeze(),
sampling_rate=16000,
return_tensors="pt"
).input_values
model.eval()
with torch.no_grad():
logits = model(input_values).logits
preds = logits.argmax(-1)
texts = processor.batch_decode(preds)
print(texts[0])
```
## Training
The code to train this model is available at https://github.com/agkphysics/amharic-asr. |