Ahmad Alismail commited on
Commit
3dc6c7c
1 Parent(s): aef2b8a

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1367.85 +/- 50.35
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:32c313b215a8cb48f0c0033168471b7d6e3cef9fdbdea43705718c136ea45534
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7883cadf70>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7883c31040>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7883c310d0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7883c31160>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f7883c311f0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f7883c31280>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7883c31310>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7883c313a0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f7883c31430>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7883c314c0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7883c31550>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7883c315e0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f7883ca99c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1677434598899657301,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAFMCkz8iHbo+uOPWPh3mRMCsODi/bnwZPixH2r8frEQ/clObP+VdvD9TOD2/muvVviCJv76g4cO/VswvP40wgjyusr2/yBl0PpYvP8B7E5fAghs1P+a3OkAxjec/JbfLvvJoeD8rMgbADfKWPmDXHD9VOPU+0cuMP2W0HL4rJSc/5VFJP3imoj8o8Oo/oj/IvXgIYL/znRG/+0fePsQTzL8C5cO+ms+gP2JrBsDL4iU+s4bSvsXCHr4cQDY/TsDrPJWVbD9M37G+HUsjvs5izT426YO/IS70Pg3ylj5g1xw/qZv/vfVp7j7J/bw+6sF1PyFx6T/ZdAPAqV5KP/Q1nL3acEu/+0tFPwZwkr41EbA/3AUDQJB8FDuaPiI9BglnP4qEyL7/iW8/d6g1Py4oezw9eUu/aPAPv9OTAb9J6zu9NumDvyEu9D6+FVnAYNccP3XZhj2yJ20/nq4EPYz1mr9v09C+7rNWPfEbIL+hvSBAry6QP2ZgX7xpvVq/t73EvMrQrb9Yx1A7wbDCviHXSz+K4bq/XeX5PPlCJsDu8U87Fty0PzdJeDsJvqi/7xsfvfJoeD8hLvQ+DfKWPmDXHD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABi3+22AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA/LjvPQAAAADcE+K/AAAAAK0jBr4AAAAA1MT4PwAAAADreYi9AAAAAFfh+j8AAAAAcNrruQAAAAB/3ve/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdFQHNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgECyrL0AAAAABNn9vwAAAAAZnuK9AAAAANkd5D8AAAAAQIIKvAAAAAABkvY/AAAAANSW870AAAAA1Dz3vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANY8JrUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDrF609AAAAAKVg378AAAAARHubPQAAAAB1NOE/AAAAAADBpr0AAAAA9EbuPwAAAABM1Xu9AAAAAKjb4b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADk97s2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA5Ez/vQAAAABidOm/AAAAAD2jYr0AAAAA19zoPwAAAAAcAmY9AAAAAIcE9T8AAAAAx+3vvQAAAABy/ti/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJB9Dgflp4+MAWyUTegDjAF0lEdAsk7uqbSZ0HV9lChoBkdAiBKXZPEbYWgHTegDaAhHQLJTAoCdSVJ1fZQoaAZHQJIcMGIKtxNoB03oA2gIR0CyU9SY5T60dX2UKGgGR0CPWLYRujynaAdN6ANoCEdAslR1aaCtinV9lChoBkdAk2W1JQLuyGgHTegDaAhHQLJYDhfBvaV1fZQoaAZHQJQTzxmTTv1oB03oA2gIR0CyW2T7Q9iddX2UKGgGR0CTGGix3V0+aAdN6ANoCEdAslvuv4dp7HV9lChoBkdAkroSoXKr72gHTegDaAhHQLJcVCYCyQh1fZQoaAZHQJNEeq3mV7hoB03oA2gIR0CyX0d7KJVKdX2UKGgGR0CUXN/FBIFvaAdN6ANoCEdAsmPGQmu1W3V9lChoBkdAk9Ftm16VuGgHTegDaAhHQLJkkyJKraN1fZQoaAZHQJSnBa5f+jxoB03oA2gIR0CyZTT8UEgXdX2UKGgGR0CVC1GnGbTdaAdN6ANoCEdAsmhl37k4m3V9lChoBkdAlL5HLJSzgWgHTegDaAhHQLJrxUsWfsh1fZQoaAZHQJS42hM8HOdoB03oA2gIR0CybFHrD63zdX2UKGgGR0CVV8/FzdULaAdN6ANoCEdAsmy1YaHbh3V9lChoBkdAlnb35JsfrGgHTegDaAhHQLJvpzk6tDF1fZQoaAZHQJZSohEBsANoB03oA2gIR0CydHrL6k6+dX2UKGgGR0CXc6Fvybx3aAdN6ANoCEdAsnVL+wTufHV9lChoBkdAlsOMFhXr+2gHTegDaAhHQLJ14OM2m511fZQoaAZHQJVooJIDoyNoB03oA2gIR0CyeMcbzbvgdX2UKGgGR0CVdrMhHLA6aAdN6ANoCEdAsnwYXdj5K3V9lChoBkdAlZ7G3KB/Z2gHTegDaAhHQLJ8o3hGYrt1fZQoaAZHQJMnzbDdgv1oB03oA2gIR0CyfQsYuTRqdX2UKGgGR0CTRxuIhyKfaAdN6ANoCEdAsoAMf2bobHV9lChoBkdAk7Qtic5Ke2gHTegDaAhHQLKFJm6Gxlh1fZQoaAZHQJQM8nVoYeloB03oA2gIR0Cyhdaab4JvdX2UKGgGR0CT78Qqqfe2aAdN6ANoCEdAsoZF7Z39rHV9lChoBkdAlWXA3kxREWgHTegDaAhHQLKJRXcxj8V1fZQoaAZHQJBNRvm5lOJoB03oA2gIR0CyjJv1g6U8dX2UKGgGR0CUCUv99+gEaAdN6ANoCEdAso0h+3H7xnV9lChoBkdAkMgBAB1cMWgHTegDaAhHQLKNhiR4hU11fZQoaAZHQJeNPLyMDOloB03oA2gIR0CykM5SzgMudX2UKGgGR0CX2V3EAHVxaAdN6ANoCEdAspWl/+bVjXV9lChoBkdAlVaz/2kBS2gHTegDaAhHQLKWKpS75Ed1fZQoaAZHQJazCSwGGEhoB03oA2gIR0CylpDvd/KAdX2UKGgGR0CO+wsFt8/maAdN6ANoCEdAspl9g4Otn3V9lChoBkdAlhDCU9pyqGgHTegDaAhHQLKc5hKlHjJ1fZQoaAZHQJOcBEy+HrRoB03oA2gIR0CynW2B4D9wdX2UKGgGR0CUVGHn2ZiNaAdN6ANoCEdAsp3Wx+rlvXV9lChoBkdAk26Qs5GSZGgHTegDaAhHQLKhZ9Cu2Z11fZQoaAZHQJZX8nhKlHloB03oA2gIR0CypgsgZCOWdX2UKGgGR0CVP3Zg5R0maAdN6ANoCEdAsqaSoUBXCHV9lChoBkdAlQOwlWwNb2gHTegDaAhHQLKm/gTAWSF1fZQoaAZHQJbgTgpBomJoB03oA2gIR0CyqfNp/PPcdX2UKGgGR0CUIj5S3solaAdN6ANoCEdAsq1WPluFYnV9lChoBkdAkOA47ihnJ2gHTegDaAhHQLKt2ye7L+x1fZQoaAZHQJSqQzch1T1oB03oA2gIR0CyrkXryDqXdX2UKGgGR0CPSwUxEfDDaAdN6ANoCEdAsrIpnscABHV9lChoBkdAkau8EeQuEmgHTegDaAhHQLK2ceMhouh1fZQoaAZHQJGIA2GZeAxoB03oA2gIR0Cytvd9H+ZPdX2UKGgGR0CK6j6NVBD5aAdN6ANoCEdAsrdhl6JIlXV9lChoBkdAkj0xkNFz+2gHTegDaAhHQLK6IKbKA8V1fZQoaAZHQJXrpnSOR1ZoB03oA2gIR0CyvT2f5DZ2dX2UKGgGR0CVB3eSjgyeaAdN6ANoCEdAsr3ASIxgzHV9lChoBkdAk1MurIYFaGgHTegDaAhHQLK+IwK0D2d1fZQoaAZHQJL+ZdAxBVxoB03oA2gIR0CywcOY2Kl6dX2UKGgGR0CQy9KoybhFaAdN6ANoCEdAssXPNt65XnV9lChoBkdAjxw5PVNHpmgHTegDaAhHQLLGSeZof0V1fZQoaAZHQIzqX4h2W6doB03oA2gIR0Cyxqa6reZYdX2UKGgGR0CGLIHRkVesaAdN6ANoCEdAsslbwuuie3V9lChoBkdAcwmQrc0tRWgHTegDaAhHQLLMdDJU5uJ1fZQoaAZHQIKDZm03OwBoB03oA2gIR0CyzO+dsi0OdX2UKGgGR0CDFf0+1SflaAdN6ANoCEdAss1Qd8zAOHV9lChoBkdAg3eyhSLqEGgHTegDaAhHQLLQjTufEn91fZQoaAZHQJMtiYVqN6xoB03oA2gIR0Cy1MpElVtGdX2UKGgGR0CULSc8TzunaAdN6ANoCEdAstVGAZsKs3V9lChoBkdAlJVyuIRAbGgHTegDaAhHQLLVoyxzJZJ1fZQoaAZHQJXu8kVvddpoB03oA2gIR0Cy2FXg9/z8dX2UKGgGR0CW63/h2nsLaAdN6ANoCEdAsttYraufVnV9lChoBkdAlxCwAQxvemgHTegDaAhHQLLb1M98qnZ1fZQoaAZHQJVSjvkRzzVoB03oA2gIR0Cy3DWlZX+3dX2UKGgGR0CVDNZ9uxbCaAdN6ANoCEdAst88p6QeWHV9lChoBkdAlOWsjNY8uGgHTegDaAhHQLLjxat9x6x1fZQoaAZHQJTysdzXBgxoB03oA2gIR0Cy5EINVinYdX2UKGgGR0CT8cSsr/bTaAdN6ANoCEdAsuSiHLzPKXV9lChoBkdAkl5fGuLaVWgHTegDaAhHQLLnQtShrWR1fZQoaAZHQI8arhvR7Z5oB03oA2gIR0Cy6mExmCiAdX2UKGgGR0CNLSpqASWaaAdN6ANoCEdAsurgHE/B33V9lChoBkdAi8OqZtvXLGgHTegDaAhHQLLrP66reZZ1fZQoaAZHQIuSP2TPjXFoB03oA2gIR0Cy7jKzE74jdX2UKGgGR0CCKC11GLDRaAdN6ANoCEdAsvLK1hLGrHV9lChoBkdAh4ml6iTMaGgHTegDaAhHQLLzWyULUkR1fZQoaAZHQIayPVRUFStoB03oA2gIR0Cy8739BKL9dX2UKGgGR0CHEC52hZhbaAdN6ANoCEdAsvaFNsWO63V9lChoBkdAhiRUJv5xi2gHTegDaAhHQLL58krPMSt1fZQoaAZHQIXdp2ll9SdoB03oA2gIR0Cy+qYTXarWdX2UKGgGR0CC75OryUcGaAdN6ANoCEdAsvsxrDZUUHV9lChoBkdAeE+uoxYaHmgHTegDaAhHQLL/pkWAPNF1fZQoaAZHQIX455s0pExoB03oA2gIR0CzBBHXVbzLdX2UKGgGR0CMxK3uuzQeaAdN6ANoCEdAswSQUTL4e3V9lChoBkdAixS4xk/bCmgHTegDaAhHQLME7yGzru91fZQoaAZHQIXbE3qAz55oB03oA2gIR0CzB5vfbblBdX2UKGgGR0CLeLg2qDK6aAdN6ANoCEdAswqmZQYUFnV9lChoBkdAi2ZqfvnbI2gHTegDaAhHQLMLIjvuw5h1fZQoaAZHQINbkd1dPcloB03oA2gIR0CzC3/HT7VKdX2UKGgGR0CQQFGwRoRJaAdN6ANoCEdAsw58OwxFiXV9lChoBkdAkb0ZowmE5GgHTegDaAhHQLMTBK6nR9h1fZQoaAZHQJNG6nKnvUloB03oA2gIR0CzE3/lMh5gdX2UKGgGR0CS7Ya5wwTNaAdN6ANoCEdAsxPhHFxXGXVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6dea6b1ef54c58c04e460269ddb0edbbc89a90cda4643bd4adfd554d988d16c
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bfe4987157c49e1e6f55247bfe3dcabb5e61ebc5e13489f888b1281a2bff5bc4
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7883cadf70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7883c31040>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7883c310d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7883c31160>", "_build": "<function ActorCriticPolicy._build at 0x7f7883c311f0>", "forward": "<function ActorCriticPolicy.forward at 0x7f7883c31280>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7883c31310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7883c313a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7883c31430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7883c314c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7883c31550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7883c315e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7883ca99c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677434598899657301, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAFMCkz8iHbo+uOPWPh3mRMCsODi/bnwZPixH2r8frEQ/clObP+VdvD9TOD2/muvVviCJv76g4cO/VswvP40wgjyusr2/yBl0PpYvP8B7E5fAghs1P+a3OkAxjec/JbfLvvJoeD8rMgbADfKWPmDXHD9VOPU+0cuMP2W0HL4rJSc/5VFJP3imoj8o8Oo/oj/IvXgIYL/znRG/+0fePsQTzL8C5cO+ms+gP2JrBsDL4iU+s4bSvsXCHr4cQDY/TsDrPJWVbD9M37G+HUsjvs5izT426YO/IS70Pg3ylj5g1xw/qZv/vfVp7j7J/bw+6sF1PyFx6T/ZdAPAqV5KP/Q1nL3acEu/+0tFPwZwkr41EbA/3AUDQJB8FDuaPiI9BglnP4qEyL7/iW8/d6g1Py4oezw9eUu/aPAPv9OTAb9J6zu9NumDvyEu9D6+FVnAYNccP3XZhj2yJ20/nq4EPYz1mr9v09C+7rNWPfEbIL+hvSBAry6QP2ZgX7xpvVq/t73EvMrQrb9Yx1A7wbDCviHXSz+K4bq/XeX5PPlCJsDu8U87Fty0PzdJeDsJvqi/7xsfvfJoeD8hLvQ+DfKWPmDXHD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABi3+22AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA/LjvPQAAAADcE+K/AAAAAK0jBr4AAAAA1MT4PwAAAADreYi9AAAAAFfh+j8AAAAAcNrruQAAAAB/3ve/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdFQHNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgECyrL0AAAAABNn9vwAAAAAZnuK9AAAAANkd5D8AAAAAQIIKvAAAAAABkvY/AAAAANSW870AAAAA1Dz3vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANY8JrUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDrF609AAAAAKVg378AAAAARHubPQAAAAB1NOE/AAAAAADBpr0AAAAA9EbuPwAAAABM1Xu9AAAAAKjb4b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADk97s2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA5Ez/vQAAAABidOm/AAAAAD2jYr0AAAAA19zoPwAAAAAcAmY9AAAAAIcE9T8AAAAAx+3vvQAAAABy/ti/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJB9Dgflp4+MAWyUTegDjAF0lEdAsk7uqbSZ0HV9lChoBkdAiBKXZPEbYWgHTegDaAhHQLJTAoCdSVJ1fZQoaAZHQJIcMGIKtxNoB03oA2gIR0CyU9SY5T60dX2UKGgGR0CPWLYRujynaAdN6ANoCEdAslR1aaCtinV9lChoBkdAk2W1JQLuyGgHTegDaAhHQLJYDhfBvaV1fZQoaAZHQJQTzxmTTv1oB03oA2gIR0CyW2T7Q9iddX2UKGgGR0CTGGix3V0+aAdN6ANoCEdAslvuv4dp7HV9lChoBkdAkroSoXKr72gHTegDaAhHQLJcVCYCyQh1fZQoaAZHQJNEeq3mV7hoB03oA2gIR0CyX0d7KJVKdX2UKGgGR0CUXN/FBIFvaAdN6ANoCEdAsmPGQmu1W3V9lChoBkdAk9Ftm16VuGgHTegDaAhHQLJkkyJKraN1fZQoaAZHQJSnBa5f+jxoB03oA2gIR0CyZTT8UEgXdX2UKGgGR0CVC1GnGbTdaAdN6ANoCEdAsmhl37k4m3V9lChoBkdAlL5HLJSzgWgHTegDaAhHQLJrxUsWfsh1fZQoaAZHQJS42hM8HOdoB03oA2gIR0CybFHrD63zdX2UKGgGR0CVV8/FzdULaAdN6ANoCEdAsmy1YaHbh3V9lChoBkdAlnb35JsfrGgHTegDaAhHQLJvpzk6tDF1fZQoaAZHQJZSohEBsANoB03oA2gIR0CydHrL6k6+dX2UKGgGR0CXc6Fvybx3aAdN6ANoCEdAsnVL+wTufHV9lChoBkdAlsOMFhXr+2gHTegDaAhHQLJ14OM2m511fZQoaAZHQJVooJIDoyNoB03oA2gIR0CyeMcbzbvgdX2UKGgGR0CVdrMhHLA6aAdN6ANoCEdAsnwYXdj5K3V9lChoBkdAlZ7G3KB/Z2gHTegDaAhHQLJ8o3hGYrt1fZQoaAZHQJMnzbDdgv1oB03oA2gIR0CyfQsYuTRqdX2UKGgGR0CTRxuIhyKfaAdN6ANoCEdAsoAMf2bobHV9lChoBkdAk7Qtic5Ke2gHTegDaAhHQLKFJm6Gxlh1fZQoaAZHQJQM8nVoYeloB03oA2gIR0Cyhdaab4JvdX2UKGgGR0CT78Qqqfe2aAdN6ANoCEdAsoZF7Z39rHV9lChoBkdAlWXA3kxREWgHTegDaAhHQLKJRXcxj8V1fZQoaAZHQJBNRvm5lOJoB03oA2gIR0CyjJv1g6U8dX2UKGgGR0CUCUv99+gEaAdN6ANoCEdAso0h+3H7xnV9lChoBkdAkMgBAB1cMWgHTegDaAhHQLKNhiR4hU11fZQoaAZHQJeNPLyMDOloB03oA2gIR0CykM5SzgMudX2UKGgGR0CX2V3EAHVxaAdN6ANoCEdAspWl/+bVjXV9lChoBkdAlVaz/2kBS2gHTegDaAhHQLKWKpS75Ed1fZQoaAZHQJazCSwGGEhoB03oA2gIR0CylpDvd/KAdX2UKGgGR0CO+wsFt8/maAdN6ANoCEdAspl9g4Otn3V9lChoBkdAlhDCU9pyqGgHTegDaAhHQLKc5hKlHjJ1fZQoaAZHQJOcBEy+HrRoB03oA2gIR0CynW2B4D9wdX2UKGgGR0CUVGHn2ZiNaAdN6ANoCEdAsp3Wx+rlvXV9lChoBkdAk26Qs5GSZGgHTegDaAhHQLKhZ9Cu2Z11fZQoaAZHQJZX8nhKlHloB03oA2gIR0CypgsgZCOWdX2UKGgGR0CVP3Zg5R0maAdN6ANoCEdAsqaSoUBXCHV9lChoBkdAlQOwlWwNb2gHTegDaAhHQLKm/gTAWSF1fZQoaAZHQJbgTgpBomJoB03oA2gIR0CyqfNp/PPcdX2UKGgGR0CUIj5S3solaAdN6ANoCEdAsq1WPluFYnV9lChoBkdAkOA47ihnJ2gHTegDaAhHQLKt2ye7L+x1fZQoaAZHQJSqQzch1T1oB03oA2gIR0CyrkXryDqXdX2UKGgGR0CPSwUxEfDDaAdN6ANoCEdAsrIpnscABHV9lChoBkdAkau8EeQuEmgHTegDaAhHQLK2ceMhouh1fZQoaAZHQJGIA2GZeAxoB03oA2gIR0Cytvd9H+ZPdX2UKGgGR0CK6j6NVBD5aAdN6ANoCEdAsrdhl6JIlXV9lChoBkdAkj0xkNFz+2gHTegDaAhHQLK6IKbKA8V1fZQoaAZHQJXrpnSOR1ZoB03oA2gIR0CyvT2f5DZ2dX2UKGgGR0CVB3eSjgyeaAdN6ANoCEdAsr3ASIxgzHV9lChoBkdAk1MurIYFaGgHTegDaAhHQLK+IwK0D2d1fZQoaAZHQJL+ZdAxBVxoB03oA2gIR0CywcOY2Kl6dX2UKGgGR0CQy9KoybhFaAdN6ANoCEdAssXPNt65XnV9lChoBkdAjxw5PVNHpmgHTegDaAhHQLLGSeZof0V1fZQoaAZHQIzqX4h2W6doB03oA2gIR0Cyxqa6reZYdX2UKGgGR0CGLIHRkVesaAdN6ANoCEdAsslbwuuie3V9lChoBkdAcwmQrc0tRWgHTegDaAhHQLLMdDJU5uJ1fZQoaAZHQIKDZm03OwBoB03oA2gIR0CyzO+dsi0OdX2UKGgGR0CDFf0+1SflaAdN6ANoCEdAss1Qd8zAOHV9lChoBkdAg3eyhSLqEGgHTegDaAhHQLLQjTufEn91fZQoaAZHQJMtiYVqN6xoB03oA2gIR0Cy1MpElVtGdX2UKGgGR0CULSc8TzunaAdN6ANoCEdAstVGAZsKs3V9lChoBkdAlJVyuIRAbGgHTegDaAhHQLLVoyxzJZJ1fZQoaAZHQJXu8kVvddpoB03oA2gIR0Cy2FXg9/z8dX2UKGgGR0CW63/h2nsLaAdN6ANoCEdAsttYraufVnV9lChoBkdAlxCwAQxvemgHTegDaAhHQLLb1M98qnZ1fZQoaAZHQJVSjvkRzzVoB03oA2gIR0Cy3DWlZX+3dX2UKGgGR0CVDNZ9uxbCaAdN6ANoCEdAst88p6QeWHV9lChoBkdAlOWsjNY8uGgHTegDaAhHQLLjxat9x6x1fZQoaAZHQJTysdzXBgxoB03oA2gIR0Cy5EINVinYdX2UKGgGR0CT8cSsr/bTaAdN6ANoCEdAsuSiHLzPKXV9lChoBkdAkl5fGuLaVWgHTegDaAhHQLLnQtShrWR1fZQoaAZHQI8arhvR7Z5oB03oA2gIR0Cy6mExmCiAdX2UKGgGR0CNLSpqASWaaAdN6ANoCEdAsurgHE/B33V9lChoBkdAi8OqZtvXLGgHTegDaAhHQLLrP66reZZ1fZQoaAZHQIuSP2TPjXFoB03oA2gIR0Cy7jKzE74jdX2UKGgGR0CCKC11GLDRaAdN6ANoCEdAsvLK1hLGrHV9lChoBkdAh4ml6iTMaGgHTegDaAhHQLLzWyULUkR1fZQoaAZHQIayPVRUFStoB03oA2gIR0Cy8739BKL9dX2UKGgGR0CHEC52hZhbaAdN6ANoCEdAsvaFNsWO63V9lChoBkdAhiRUJv5xi2gHTegDaAhHQLL58krPMSt1fZQoaAZHQIXdp2ll9SdoB03oA2gIR0Cy+qYTXarWdX2UKGgGR0CC75OryUcGaAdN6ANoCEdAsvsxrDZUUHV9lChoBkdAeE+uoxYaHmgHTegDaAhHQLL/pkWAPNF1fZQoaAZHQIX455s0pExoB03oA2gIR0CzBBHXVbzLdX2UKGgGR0CMxK3uuzQeaAdN6ANoCEdAswSQUTL4e3V9lChoBkdAixS4xk/bCmgHTegDaAhHQLME7yGzru91fZQoaAZHQIXbE3qAz55oB03oA2gIR0CzB5vfbblBdX2UKGgGR0CLeLg2qDK6aAdN6ANoCEdAswqmZQYUFnV9lChoBkdAi2ZqfvnbI2gHTegDaAhHQLMLIjvuw5h1fZQoaAZHQINbkd1dPcloB03oA2gIR0CzC3/HT7VKdX2UKGgGR0CQQFGwRoRJaAdN6ANoCEdAsw58OwxFiXV9lChoBkdAkb0ZowmE5GgHTegDaAhHQLMTBK6nR9h1fZQoaAZHQJNG6nKnvUloB03oA2gIR0CzE3/lMh5gdX2UKGgGR0CS7Ya5wwTNaAdN6ANoCEdAsxPhHFxXGXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (236 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1367.8483826017996, "std_reward": 50.348572005956896, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-26T19:13:53.908875"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8018be68c3e5c8c50f8ca70505befebf5323bed82db441bff19871e4020d109
3
+ size 2136