--- base_model: bert-base-uncased library_name: transformers license: apache-2.0 metrics: - accuracy - f1 tags: - generated_from_trainer model-index: - name: Finetuning_Bert_ClinicalNotes_Diagnosis_Classification results: [] --- # Finetuning_Bert_ClinicalNotes_Diagnosis_Classification This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0028 - Accuracy: 1.0 - F1: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---:| | No log | 1.0 | 438 | 0.0226 | 1.0 | 1.0 | | 0.6724 | 2.0 | 876 | 0.0069 | 1.0 | 1.0 | | 0.0134 | 3.0 | 1314 | 0.0041 | 1.0 | 1.0 | | 0.0062 | 4.0 | 1752 | 0.0031 | 1.0 | 1.0 | | 0.0044 | 5.0 | 2190 | 0.0028 | 1.0 | 1.0 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.2.0 - Tokenizers 0.19.1