--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: xlm-roberta-base-POS-arabic results: [] --- # xlm-roberta-base-POS-arabic This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0822 - F1: 0.9689 - Accuracy: 0.9785 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:| | 0.5584 | 1.0 | 95 | 0.1231 | 0.9537 | 0.9679 | | 0.1191 | 2.0 | 190 | 0.0933 | 0.9645 | 0.9755 | | 0.0901 | 3.0 | 285 | 0.0868 | 0.9667 | 0.9768 | | 0.0757 | 4.0 | 380 | 0.0851 | 0.9675 | 0.9774 | | 0.066 | 5.0 | 475 | 0.0822 | 0.9689 | 0.9785 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.2 - Datasets 2.1.0 - Tokenizers 0.15.2