ahmeddbahaa
commited on
Commit
•
c2be33d
1
Parent(s):
c8d53ae
update model card README.md
Browse files
README.md
CHANGED
@@ -5,22 +5,9 @@ tags:
|
|
5 |
- generated_from_trainer
|
6 |
datasets:
|
7 |
- xlsum
|
8 |
-
metrics:
|
9 |
-
- rouge
|
10 |
model-index:
|
11 |
- name: AraBART-finetuned-ar
|
12 |
-
results:
|
13 |
-
- task:
|
14 |
-
name: Sequence-to-sequence Language Modeling
|
15 |
-
type: text2text-generation
|
16 |
-
dataset:
|
17 |
-
name: xlsum
|
18 |
-
type: xlsum
|
19 |
-
args: arabic
|
20 |
-
metrics:
|
21 |
-
- name: Rouge1
|
22 |
-
type: rouge
|
23 |
-
value: 2.2459
|
24 |
---
|
25 |
|
26 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -30,12 +17,12 @@ should probably proofread and complete it, then remove this comment. -->
|
|
30 |
|
31 |
This model is a fine-tuned version of [moussaKam/AraBART](https://huggingface.co/moussaKam/AraBART) on the xlsum dataset.
|
32 |
It achieves the following results on the evaluation set:
|
33 |
-
- Loss:
|
34 |
-
-
|
35 |
-
-
|
36 |
-
-
|
37 |
-
-
|
38 |
-
-
|
39 |
|
40 |
## Model description
|
41 |
|
@@ -55,35 +42,34 @@ More information needed
|
|
55 |
|
56 |
The following hyperparameters were used during training:
|
57 |
- learning_rate: 5e-05
|
58 |
-
- train_batch_size:
|
59 |
-
- eval_batch_size:
|
60 |
- seed: 42
|
61 |
-
- gradient_accumulation_steps: 16
|
62 |
-
- total_train_batch_size: 64
|
63 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
64 |
- lr_scheduler_type: linear
|
65 |
-
-
|
66 |
- num_epochs: 10
|
|
|
67 |
|
68 |
### Training results
|
69 |
|
70 |
-
| Training Loss | Epoch | Step
|
71 |
-
|
72 |
-
|
|
73 |
-
|
|
74 |
-
|
|
75 |
-
|
|
76 |
-
|
|
77 |
-
|
|
78 |
-
|
|
79 |
-
|
|
80 |
-
|
|
81 |
-
|
|
82 |
|
83 |
|
84 |
### Framework versions
|
85 |
|
86 |
-
- Transformers 4.
|
87 |
- Pytorch 1.10.0+cu111
|
88 |
-
- Datasets 2.
|
89 |
-
- Tokenizers 0.
|
|
|
5 |
- generated_from_trainer
|
6 |
datasets:
|
7 |
- xlsum
|
|
|
|
|
8 |
model-index:
|
9 |
- name: AraBART-finetuned-ar
|
10 |
+
results: []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
---
|
12 |
|
13 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
17 |
|
18 |
This model is a fine-tuned version of [moussaKam/AraBART](https://huggingface.co/moussaKam/AraBART) on the xlsum dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 3.7449
|
21 |
+
- Rouge-1: 31.08
|
22 |
+
- Rouge-2: 14.68
|
23 |
+
- Rouge-l: 27.36
|
24 |
+
- Gen Len: 19.64
|
25 |
+
- Bertscore: 73.86
|
26 |
|
27 |
## Model description
|
28 |
|
|
|
42 |
|
43 |
The following hyperparameters were used during training:
|
44 |
- learning_rate: 5e-05
|
45 |
+
- train_batch_size: 16
|
46 |
+
- eval_batch_size: 16
|
47 |
- seed: 42
|
|
|
|
|
48 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
- lr_scheduler_type: linear
|
50 |
+
- lr_scheduler_warmup_steps: 250
|
51 |
- num_epochs: 10
|
52 |
+
- label_smoothing_factor: 0.1
|
53 |
|
54 |
### Training results
|
55 |
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge-1 | Rouge-2 | Rouge-l | Gen Len | Bertscore |
|
57 |
+
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:---------:|
|
58 |
+
| 4.4318 | 1.0 | 2345 | 3.7996 | 28.93 | 13.2 | 25.56 | 19.51 | 73.17 |
|
59 |
+
| 4.0338 | 2.0 | 4690 | 3.7483 | 30.29 | 14.24 | 26.73 | 19.5 | 73.59 |
|
60 |
+
| 3.8586 | 3.0 | 7035 | 3.7281 | 30.44 | 14.44 | 26.92 | 19.75 | 73.58 |
|
61 |
+
| 3.7289 | 4.0 | 9380 | 3.7204 | 30.55 | 14.49 | 26.88 | 19.66 | 73.73 |
|
62 |
+
| 3.6245 | 5.0 | 11725 | 3.7199 | 30.73 | 14.63 | 27.11 | 19.69 | 73.68 |
|
63 |
+
| 3.5392 | 6.0 | 14070 | 3.7221 | 30.85 | 14.65 | 27.21 | 19.7 | 73.77 |
|
64 |
+
| 3.4694 | 7.0 | 16415 | 3.7286 | 31.08 | 14.8 | 27.41 | 19.62 | 73.84 |
|
65 |
+
| 3.4126 | 8.0 | 18760 | 3.7384 | 31.06 | 14.77 | 27.41 | 19.64 | 73.82 |
|
66 |
+
| 3.3718 | 9.0 | 21105 | 3.7398 | 31.18 | 14.89 | 27.49 | 19.67 | 73.87 |
|
67 |
+
| 3.3428 | 10.0 | 23450 | 3.7449 | 31.19 | 14.88 | 27.44 | 19.68 | 73.87 |
|
68 |
|
69 |
|
70 |
### Framework versions
|
71 |
|
72 |
+
- Transformers 4.18.0
|
73 |
- Pytorch 1.10.0+cu111
|
74 |
+
- Datasets 2.1.0
|
75 |
+
- Tokenizers 0.12.1
|