--- license: apache-2.0 tags: - summarization - generated_from_trainer datasets: - xlsum metrics: - rouge model-index: - name: t5-small-finetuned-xlsum-en results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xlsum type: xlsum args: english metrics: - name: Rouge1 type: rouge value: 23.7508 --- # t5-small-finetuned-xlsum-en This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xlsum dataset. It achieves the following results on the evaluation set: - Loss: 2.6629 - Rouge1: 23.7508 - Rouge2: 5.5427 - Rougel: 18.6777 - Rougelsum: 18.652 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 3 - eval_batch_size: 3 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:| | 3.0789 | 1.0 | 1010 | 2.6881 | 22.6824 | 4.4735 | 17.6707 | 17.5485 | | 2.9223 | 2.0 | 2020 | 2.6629 | 23.7508 | 5.5427 | 18.6777 | 18.652 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6