ai-forever commited on
Commit
6b6b533
1 Parent(s): 382bd51

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -3
README.md CHANGED
@@ -21,7 +21,6 @@ An extensive dataset with “artificial” errors was taken as a training corpus
21
  - [SAGE library announcement](https://youtu.be/yFfkV0Qjuu0), DataFest 2023
22
  - [Paper about synthetic error generation methods](https://www.dialog-21.ru/media/5914/martynovnplusetal056.pdf), Dialogue 2023
23
  - [Paper about SAGE and our best solution](https://arxiv.org/abs/2308.09435), Review EACL 2024
24
- - Path to model = "ai-forever/T5-large-spell"
25
 
26
  ### Examples
27
  | Input | Output |
@@ -61,14 +60,14 @@ We present a comparison of our solution both with open automatic spell checkers
61
  ```python
62
  from transformers import T5ForConditionalGeneration, AutoTokenizer
63
 
64
- path_to_model = "<path_to_model>"
65
 
66
  model = T5ForConditionalGeneration.from_pretrained(path_to_model)
67
  tokenizer = AutoTokenizer.from_pretrained(path_to_model)
68
  prefix = "grammar: "
69
 
70
  sentence = "If you bought something goregous, you well be very happy."
71
- sentence = prefix + grammar
72
 
73
  encodings = tokenizer(sentence, return_tensors="pt")
74
  generated_tokens = model.generate(**encodings)
 
21
  - [SAGE library announcement](https://youtu.be/yFfkV0Qjuu0), DataFest 2023
22
  - [Paper about synthetic error generation methods](https://www.dialog-21.ru/media/5914/martynovnplusetal056.pdf), Dialogue 2023
23
  - [Paper about SAGE and our best solution](https://arxiv.org/abs/2308.09435), Review EACL 2024
 
24
 
25
  ### Examples
26
  | Input | Output |
 
60
  ```python
61
  from transformers import T5ForConditionalGeneration, AutoTokenizer
62
 
63
+ path_to_model = "ai-forever/T5-large-spell"
64
 
65
  model = T5ForConditionalGeneration.from_pretrained(path_to_model)
66
  tokenizer = AutoTokenizer.from_pretrained(path_to_model)
67
  prefix = "grammar: "
68
 
69
  sentence = "If you bought something goregous, you well be very happy."
70
+ sentence = prefix + sentence
71
 
72
  encodings = tokenizer(sentence, return_tensors="pt")
73
  generated_tokens = model.generate(**encodings)