File size: 8,523 Bytes
f8b1b6b
c724bd3
 
 
 
 
 
 
f8b1b6b
c724bd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab7cd5a
c724bd3
 
 
ab7cd5a
c724bd3
 
 
ab7cd5a
c724bd3
 
 
 
 
 
 
 
 
ab7cd5a
c724bd3
 
 
ab7cd5a
c724bd3
 
 
ab7cd5a
c724bd3
 
 
 
 
 
 
 
 
ab7cd5a
c724bd3
 
 
ab7cd5a
c724bd3
 
 
ab7cd5a
c724bd3
 
 
 
 
 
 
 
 
ab7cd5a
c724bd3
 
 
ab7cd5a
c724bd3
 
 
ab7cd5a
c724bd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8b1b6b
c724bd3
 
 
 
 
 
 
ab7cd5a
c724bd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab7cd5a
 
c724bd3
 
 
 
 
 
 
ab7cd5a
 
c724bd3
 
 
 
 
 
 
ab7cd5a
 
c724bd3
 
 
 
 
 
 
ab7cd5a
 
c724bd3
 
 
 
ab7cd5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c724bd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
---
language:
- ru
- en
tags:
- spellchecking
- pytorch
- natural language generation
license: mit
metrics:
- precision
- recall
- f1
library_name: transformers
model-index:
- name: sage-mt5-large
  results:
  - task:
      type: text-generation
    dataset:
      type: spellcheck_benchmark
      name: RUSpellRU 
    metrics:
    - name: Precision
      type: precision
      value: 56.2
      verified: false
    - name: Recall
      type: recall
      value: 65.8
      verified: false
    - name: F1 
      type: f1
      value: 60.6
      verified: false
  - task:
      type: text-generation
    dataset:
      type: spellcheck_benchmark
      name: MultidomainGold 
    metrics:
    - name: Precision
      type: precision
      value: 42.1
      verified: false
    - name: Recall
      type: recall
      value: 47.5
      verified: false
    - name: F1 
      type: f1
      value: 44.6
      verified: false
  - task:
      type: text-generation
    dataset:
      type: spellcheck_benchmark
      name: MedSpellchecker
    metrics:
    - name: Precision
      type: precision
      value: 38.6
      verified: false
    - name: Recall
      type: recall
      value: 56.0
      verified: false
    - name: F1 
      type: f1
      value: 45.7
      verified: false
  - task:
      type: text-generation
    dataset:
      type: spellcheck_benchmark
      name: GitHubTypoCorpusRu
    metrics:
    - name: Precision
      type: precision
      value: 52.8
      verified: false
    - name: Recall
      type: recall
      value: 49.8
      verified: false
    - name: F1 
      type: f1
      value: 51.2
      verified: false
  - task:
      type: text-generation
    dataset:
      type: JFLEG
      name: JFLEG
    metrics:
    - name: Precision
      type: precision
      value: 74.9
      verified: false
    - name: Recall
      type: recall
      value: 88.4
      verified: false
    - name: F1 
      type: f1
      value: 81.1
      verified: false
  - task:
      type: text-generation
    dataset:
      type: bea60k
      name: BEA60K
    metrics:
    - name: Precision
      type: precision
      value: 64.7
      verified: false
    - name: Recall
      type: recall
      value: 83.8
      verified: false
    - name: F1 
      type: f1
      value: 73.0
      verified: false
---
# sage-mt5-large

![banner](images/sage_banner.jpg)

## Summary

The model corrects spelling errors and typos in both Russian and English languages by bringing all the words in the text to the norm of the language.
Corrector had been trained based on the model [mT5-large](https://huggingface.co/google/mt5-large) architecture. 
An extensive dataset with “artificial” errors was taken as a training corpus: the corpus was assembled on the basis of the Russian-language Wikipedia and transcripts of Russian-language videos, then typos and spelling errors were automatically introduced into it using the library [SAGE](https://github.com/ai-forever/sage).

## Public references
- [SAGE library announcement](https://youtu.be/yFfkV0Qjuu0), DataFest 2023
- [Paper about synthetic error generation methods](https://www.dialog-21.ru/media/5914/martynovnplusetal056.pdf), Dialogue 2023
- [SAGE EACL 2024 paper](https://aclanthology.org/2024.findings-eacl.10/)


## Examples
| Input | Output |
| --- | --- |
| Перведи мне текст на аглиском: "Screw you kuys, I am goin hme (c). | Переведи мне текст на английском: "Screw you guys, I am going home" (c). |
| И не чсно прохожим в этот день непогожйи почему я веселый такйо | И мне ясно прохожим в этот день непогожий, почему я веселый такой |
| If you bought something goregous, you well be very happy. | If you bought something gorgeous, you will be very happy.|
|  |  |

## Metrics
### Quality
Below are automatic metrics for determining the correctness of the spell checkers. 
We compare our solution with both open automatic spell checkers and the ChatGPT family of models on all six available datasets:
- **RUSpellRU**: texts collected from ([LiveJournal](https://www.livejournal.com/media)), with manually corrected typos and errors;
- **MultidomainGold**: examples from 7 text sources, including the open web, news, social media, reviews, subtitles, policy documents and literary works;
- **MedSpellChecker**: texts with errors from medical anamnesis;
- **GitHubTypoCorpusRu**: spelling errors and typos in commits from [GitHub](https://github.com);
- **BEA60K**: English spelling errors collected from several domains;
- **JFLEG**: 1601 sentences in English, which contain about 2 thousand spelling errors;

RUSpellRU, MultidomainGold, MedSpellChecker, GitHubTypoCorpusRu are datasets for the Russian spellchecking and BEA60K and JFLEG are those for the English language.

**RUSpellRU**
| Model | Precision | Recall | F1 | 
| --- | --- | --- | --- | 
| sage-mt5-large | 56.2 | 65.8 | 60.6 | 
| sage-mt5-large (ft.) | 88.4 | 71.6 | 79.1 | 
| sage-ai-service | 93.5 | 82.4 | 87.6 | 
| gpt-3.5-turbo | 39.6 | 62.3 | 48.5 | 
| gpt-4 | 69.5 | 81.0 | 74.8 | 

**MultidomainGold**
| Model | Precision | Recall | F1 | 
| --- | --- | --- | --- | 
| sage-mt5-large | 42.1 | 47.5 | 44.6 | 
| sage-mt5-large (ft.) | 65.3 | 62.7 | 63.9 | 
| sage-ai-service | 70.9 | 68.8 | 69.9 | 
| gpt-3.5-turbo | 17.8 | 56.1 | 27.0 | 
| gpt-4 | 31.1 | 78.1 | 44.5 | 

**MedSpellChecker**
| Model | Precision | Recall | F1 | 
| --- | --- | --- | --- | 
| sage-mt5-large | 38.6 | 56.0 | 45.7 | 
| sage-mt5-large (ft.) | 77.7 | 77.5 | 77.6 | 
| sage-ai-service | 73.4 | 76.2 | 74.9 | 
| gpt-3.5-turbo | 15.1 | 53.6 | 23.5 | 
| gpt-4 | 48.9 | 88.7 | 63.1 | 

**GitHubTypoCorpusRu**
| Model | Precision | Recall | F1 | 
| --- | --- | --- | --- | 
| sage-mt5-large | 52.8 | 49.8 | 51.2 | 
| sage-mt5-large (ft.) | 69.5 | 46.0 | 55.3 | 
| sage-ai-service | 76.1 | 51.2 | 61.2 | 
| gpt-3.5-turbo | 23.7 | 43.9 | 30.8 | 
| gpt-4 | 34.7  | 60.5 | 44.1| 

**BEA60K**
| Model | Precision | Recall | F1 |
| --- | --- | --- | --- |
| sage-mt5-large | 64.7 | 83.8 | 73.0 | 
| gpt-3.5-turbo |  66.9 | 84.1 | 74.5 | 
| gpt-4 | 68.6 | 85.2 | 76.0 | 
| Bert (https://github.com/neuspell/neuspell) | 65.8 | 79.6 | 72.0 |
| SC-LSTM (https://github.com/neuspell/neuspell) | 62.2 | 80.3 | 72.0 |

**JFLEG**
| Model | Precision | Recall | F1 |
| --- | --- | --- | --- |
| sage-mt5-large | 74.9 | 88.4 | 81.1 |
| gpt-3.5-turbo |  77.8 | 88.6 | 82.9 | 
| gpt-4 | 77.9 | 88.3 | 82.8 |
| Bert (https://github.com/neuspell/neuspell) | 78.5 | 85.4 | 81.8 |
| SC-LSTM (https://github.com/neuspell/neuspell) | 80.6 | 86.1 | 83.2 |


## How to use
```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

tokenizer = AutoTokenizer.from_pretrained("ai-forever/sage-mt5-large")
model = AutoModelForSeq2SeqLM.from_pretrained("ai-forever/sage-mt5-large")
model.to("cuda:0")

sentence = "Перведи мне текст на аглиском: \"Screw you kuys, I am goin hme (c)."
with torch.inference_mode():
    encodings = tokenizer(sentence, max_length=None, padding="longest", truncation=False, return_tensors="pt")
    for k, v in encodings.items():
        encodings[k] = v.to("cuda:0")
    res = model.generate(
        **encodings,
        use_cache=True,
        max_length = encodings["input_ids"].size(1) * 1.5
    )
    res = res.cpu().tolist()
    res = tokenizer.batch_decode(res, skip_special_tokens=True)

print(res)
# ["Переведи мне текст на английском: "Screw you guys, I am going home" (c)."]
```

## Limitations
- For the Russian language the model is intended to be fine-tuned for better performance.

## Resources
- [SAGE library](https://github.com/ai-forever/sage), GitHub
- [sage-fredt5-large](https://huggingface.co/ai-forever/sage-fredt5-large), HuggingFace
- [sage-fredt5-distilled-95m](https://huggingface.co/ai-forever/sage-fredt5-distilled-95m), HuggingFace
- [sage-m2m100-1.2B](https://huggingface.co/ai-forever/sage-m2m100-1.2B), HuggingFace
- [sage-mt5-large](https://huggingface.co/ai-forever/sage-mt5-large), HuggingFace

## License
Model [mT5-large](https://huggingface.co/google/mt5-large), on the basis of which our solution is made, and its source code are supplied under the Apache-2.0 license. 
Our solution comes with MIT license.

## Specifications
- File size: 5 Gb;
- Framework: pytorch
- Version: v1.0
- Developer: SberDevices, AGI NLP

## Contacts
nikita.martynov.98@list.ru