readme
Browse files
README.md
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
BERT large model (uncased) for Sentence Embeddings in Russian language.
|
2 |
+
The model is described in this article](https://habr.com/ru/company/sberdevices/blog/527576/)
|
3 |
+
For better quality, use mean token embeddings.
|
4 |
+
|
5 |
+
## Usage (HuggingFace Models Repository)
|
6 |
+
|
7 |
+
You can use the model directly from the model repository to compute sentence embeddings:
|
8 |
+
```python
|
9 |
+
from transformers import AutoTokenizer, AutoModel
|
10 |
+
import torch
|
11 |
+
|
12 |
+
|
13 |
+
#Mean Pooling - Take attention mask into account for correct averaging
|
14 |
+
def mean_pooling(model_output, attention_mask):
|
15 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
16 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
17 |
+
sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1)
|
18 |
+
sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
19 |
+
return sum_embeddings / sum_mask
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
+
#Sentences we want sentence embeddings for
|
24 |
+
sentences = ['Привет! Как твои дела?',
|
25 |
+
'А правда, что 42 твое любимое число?']
|
26 |
+
|
27 |
+
#Load AutoModel from huggingface model repository
|
28 |
+
tokenizer = AutoTokenizer.from_pretrained("sberbank-ai/sbert_large_nlu_ru")
|
29 |
+
model = AutoModel.from_pretrained("sberbank-ai/sbert_large_nlu_ru")
|
30 |
+
|
31 |
+
#Tokenize sentences
|
32 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=24, return_tensors='pt')
|
33 |
+
|
34 |
+
#Compute token embeddings
|
35 |
+
with torch.no_grad():
|
36 |
+
model_output = model(**encoded_input)
|
37 |
+
|
38 |
+
#Perform pooling. In this case, mean pooling
|
39 |
+
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
40 |
+
```
|