ai-forever
commited on
Commit
•
ce90b89
1
Parent(s):
7a41180
Delete README.md
Browse files
README.md
DELETED
@@ -1,143 +0,0 @@
|
|
1 |
-
---
|
2 |
-
language: []
|
3 |
-
library_name: sentence-transformers
|
4 |
-
tags:
|
5 |
-
- sentence-transformers
|
6 |
-
- sentence-similarity
|
7 |
-
- feature-extraction
|
8 |
-
base_model: ai-forever/sbert_large_nlu_ru
|
9 |
-
widget: []
|
10 |
-
pipeline_tag: sentence-similarity
|
11 |
-
---
|
12 |
-
|
13 |
-
# SentenceTransformer based on ai-forever/sbert_large_nlu_ru
|
14 |
-
|
15 |
-
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [ai-forever/sbert_large_nlu_ru](https://huggingface.co/ai-forever/sbert_large_nlu_ru). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
16 |
-
|
17 |
-
## Model Details
|
18 |
-
|
19 |
-
### Model Description
|
20 |
-
- **Model Type:** Sentence Transformer
|
21 |
-
- **Base model:** [ai-forever/sbert_large_nlu_ru](https://huggingface.co/ai-forever/sbert_large_nlu_ru) <!-- at revision 95c66a03e1cea189286bf8ba895999f1fd355d8c -->
|
22 |
-
- **Maximum Sequence Length:** 512 tokens
|
23 |
-
- **Output Dimensionality:** 1024 tokens
|
24 |
-
- **Similarity Function:** Cosine Similarity
|
25 |
-
<!-- - **Training Dataset:** Unknown -->
|
26 |
-
<!-- - **Language:** Unknown -->
|
27 |
-
<!-- - **License:** Unknown -->
|
28 |
-
|
29 |
-
### Model Sources
|
30 |
-
|
31 |
-
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
32 |
-
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
33 |
-
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
34 |
-
|
35 |
-
### Full Model Architecture
|
36 |
-
|
37 |
-
```
|
38 |
-
SentenceTransformer(
|
39 |
-
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
40 |
-
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
41 |
-
)
|
42 |
-
```
|
43 |
-
|
44 |
-
## Usage
|
45 |
-
|
46 |
-
### Direct Usage (Sentence Transformers)
|
47 |
-
|
48 |
-
First install the Sentence Transformers library:
|
49 |
-
|
50 |
-
```bash
|
51 |
-
pip install -U sentence-transformers
|
52 |
-
```
|
53 |
-
|
54 |
-
Then you can load this model and run inference.
|
55 |
-
```python
|
56 |
-
from sentence_transformers import SentenceTransformer
|
57 |
-
|
58 |
-
# Download from the 🤗 Hub
|
59 |
-
model = SentenceTransformer("sentence_transformers_model_id")
|
60 |
-
# Run inference
|
61 |
-
sentences = [
|
62 |
-
'The weather is lovely today.',
|
63 |
-
"It's so sunny outside!",
|
64 |
-
'He drove to the stadium.',
|
65 |
-
]
|
66 |
-
embeddings = model.encode(sentences)
|
67 |
-
print(embeddings.shape)
|
68 |
-
# [3, 1024]
|
69 |
-
|
70 |
-
# Get the similarity scores for the embeddings
|
71 |
-
similarities = model.similarity(embeddings, embeddings)
|
72 |
-
print(similarities.shape)
|
73 |
-
# [3, 3]
|
74 |
-
```
|
75 |
-
|
76 |
-
<!--
|
77 |
-
### Direct Usage (Transformers)
|
78 |
-
|
79 |
-
<details><summary>Click to see the direct usage in Transformers</summary>
|
80 |
-
|
81 |
-
</details>
|
82 |
-
-->
|
83 |
-
|
84 |
-
<!--
|
85 |
-
### Downstream Usage (Sentence Transformers)
|
86 |
-
|
87 |
-
You can finetune this model on your own dataset.
|
88 |
-
|
89 |
-
<details><summary>Click to expand</summary>
|
90 |
-
|
91 |
-
</details>
|
92 |
-
-->
|
93 |
-
|
94 |
-
<!--
|
95 |
-
### Out-of-Scope Use
|
96 |
-
|
97 |
-
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
98 |
-
-->
|
99 |
-
|
100 |
-
<!--
|
101 |
-
## Bias, Risks and Limitations
|
102 |
-
|
103 |
-
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
104 |
-
-->
|
105 |
-
|
106 |
-
<!--
|
107 |
-
### Recommendations
|
108 |
-
|
109 |
-
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
110 |
-
-->
|
111 |
-
|
112 |
-
## Training Details
|
113 |
-
|
114 |
-
### Framework Versions
|
115 |
-
- Python: 3.9.6
|
116 |
-
- Sentence Transformers: 3.0.0
|
117 |
-
- Transformers: 4.41.2
|
118 |
-
- PyTorch: 2.3.0
|
119 |
-
- Accelerate:
|
120 |
-
- Datasets: 2.19.2
|
121 |
-
- Tokenizers: 0.19.1
|
122 |
-
|
123 |
-
## Citation
|
124 |
-
|
125 |
-
### BibTeX
|
126 |
-
|
127 |
-
<!--
|
128 |
-
## Glossary
|
129 |
-
|
130 |
-
*Clearly define terms in order to be accessible across audiences.*
|
131 |
-
-->
|
132 |
-
|
133 |
-
<!--
|
134 |
-
## Model Card Authors
|
135 |
-
|
136 |
-
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
137 |
-
-->
|
138 |
-
|
139 |
-
<!--
|
140 |
-
## Model Card Contact
|
141 |
-
|
142 |
-
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
143 |
-
-->
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|