File size: 18,773 Bytes
39e275d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cea8509
39e275d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f096a9b
39e275d
 
 
 
4e5f0d1
39e275d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
from typing import List, Union, Dict, Mapping, Optional, Tuple, TypedDict
import torch
import os
import json
import numpy as np
from functools import partial
from contextlib import nullcontext
from transformers import AutoModel, PreTrainedTokenizerFast, BatchEncoding, DataCollatorWithPadding
from transformers.modeling_utils import PreTrainedModel
from transformers.models.auto import AutoTokenizer
from transformers.models.llama.modeling_llama import LLAMA_INPUTS_DOCSTRING
from transformers.modeling_outputs import BaseModelOutputWithPast
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_attention_mask_for_sdpa
from transformers import LlamaModel, LlamaConfig
from transformers.cache_utils import Cache, DynamicCache
from transformers.utils import (
    add_start_docstrings_to_model_forward,
    logging,
)
from einops import rearrange, repeat
from tqdm.auto import tqdm
from datasets import Dataset
from torch.utils.data import DataLoader
from .configuration_gigarembed import GigarEmbedConfig, LatentAttentionConfig, BidirectionalLlamaConfig

logger = logging.get_logger(__name__)

class GigarEmbedFeatures(TypedDict):
    input_dict: torch.Tensor
    attention_mask: torch.Tensor
    pool_mask: torch.Tensor

class BidirectionalLlamaModel(LlamaModel):
    config_class = BidirectionalLlamaConfig
    
    def __init__(self, config: LlamaConfig):
        super().__init__(config)
        for layer in self.layers:
            layer.self_attn.is_causal = False
        self._attn_implementation = "eager"

    @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutputWithPast]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # retrieve input_ids and inputs_embeds
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
        elif input_ids is not None:
            batch_size, seq_length = input_ids.shape
        elif inputs_embeds is not None:
            batch_size, seq_length, _ = inputs_embeds.shape
        else:
            raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")

        if self.gradient_checkpointing and self.training:
            if use_cache:
                logger.warning_once(
                    "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
                )
                use_cache = False

        past_key_values_length = 0

        if use_cache:
            use_legacy_cache = not isinstance(past_key_values, Cache)
            if use_legacy_cache:
                past_key_values = DynamicCache.from_legacy_cache(past_key_values)
            past_key_values_length = past_key_values.get_usable_length(seq_length)

        if position_ids is None:
            device = input_ids.device if input_ids is not None else inputs_embeds.device
            position_ids = torch.arange(
                past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
            )
            position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
        else:
            position_ids = position_ids.view(-1, seq_length).long()

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)

        if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache:
            is_padding_right = attention_mask[:, -1].sum().item() != batch_size
            if is_padding_right:
                raise ValueError(
                    "You are attempting to perform batched generation with padding_side='right'"
                    " this may lead to unexpected behaviour for Flash Attention version of Llama. Make sure to "
                    " call `tokenizer.padding_side = 'left'` before tokenizing the input. "
                )

        if self._attn_implementation == "flash_attention_2":
            # 2d mask is passed through the layers
            attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
        elif self._attn_implementation == "sdpa" and not output_attentions:
            # output_attentions=True can not be supported when using SDPA, and we fall back on
            # the manual implementation that requires a 4D causal mask in all cases.
            attention_mask = _prepare_4d_attention_mask_for_sdpa(
                attention_mask, inputs_embeds.dtype
            )
        else:
            # 4d mask is passed through the layers
            attention_mask = _prepare_4d_attention_mask(
                attention_mask, inputs_embeds.dtype,
            )

        hidden_states = inputs_embeds
        
        # create position embeddings to be shared across the decoder layers
        position_embeddings = self.rotary_emb(hidden_states, position_ids)

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        next_decoder_cache = None

        for decoder_layer in self.layers:
            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            if self.gradient_checkpointing and self.training:
                layer_outputs = self._gradient_checkpointing_func(
                    decoder_layer.__call__,
                    hidden_states,
                    attention_mask,
                    position_ids,
                    past_key_values,
                    output_attentions,
                    use_cache,
                    position_embeddings=position_embeddings
                )
            else:
                layer_outputs = decoder_layer(
                    hidden_states,
                    attention_mask=attention_mask,
                    position_ids=position_ids,
                    past_key_value=past_key_values,
                    output_attentions=output_attentions,
                    use_cache=use_cache,
                    position_embeddings=position_embeddings
                )

            hidden_states = layer_outputs[0]

            if use_cache:
                next_decoder_cache = layer_outputs[2 if output_attentions else 1]

            if output_attentions:
                all_self_attns += (layer_outputs[1],)

        hidden_states = self.norm(hidden_states)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        next_cache = None
        if use_cache:
            next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache

        if not return_dict:
            return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
        )
    
def _move_to_device(maybe_tensor, device: torch.device):
    if torch.is_tensor(maybe_tensor):
        return maybe_tensor.to(device, non_blocking=device.type == "cuda")
    elif isinstance(maybe_tensor, dict):
        return {key: _move_to_device(value, device) for key, value in maybe_tensor.items()}
    elif isinstance(maybe_tensor, list):
        return [_move_to_device(x, device) for x in maybe_tensor]
    elif isinstance(maybe_tensor, tuple):
        return tuple([_move_to_device(x, device) for x in maybe_tensor])
    elif isinstance(maybe_tensor, Mapping):
        return type(maybe_tensor)({k: _move_to_device(v, device) for k, v in maybe_tensor.items()})
    else:
        return maybe_tensor

def move_to_device(sample, device: torch.device):
    if device.type == "cpu":
        return sample
    
    if len(sample) == 0:
        return {}
    return _move_to_device(sample, device)


def input_transform_func(
    tokenizer: PreTrainedTokenizerFast,
    examples: Dict[str, List],
    max_length: int,
    instruction: str,
) -> BatchEncoding:
    examples['input_texts'] = [instruction + input_example for input_example in examples['input_texts']]
    batch_dict = tokenizer(
        examples['input_texts'],
        max_length=max_length,
        padding=True,
        return_token_type_ids=False,
        return_tensors="pt",
        truncation=True)
    return batch_dict


class PreNorm(torch.nn.Module):
    def __init__(self, dim, fn, context_dim = None):
        super().__init__()
        # TODO remove this layer, we don't use it

    def forward(self, x, **kwargs):
        return x

class GEGLU(torch.nn.Module):
    def forward(self, x):
        x, gates = x.chunk(2, dim = -1)
        return x * torch.nn.functional.gelu(gates)

class FeedForward(torch.nn.Module):
    def __init__(self, dim, mult = 4):
        super().__init__()
        self.net = torch.nn.Sequential(
            torch.nn.Linear(dim, 2 * dim * mult),
            GEGLU(),
            torch.nn.Linear(dim * mult, dim)
        )

    def forward(self, x):
        return self.net(x)

def exists(val):
    return val is not None

def default(val, d):
    return val if exists(val) else d


class Attention(torch.nn.Module):
    def __init__(self, query_dim, context_dim = None, heads = 8, dim_head = 64):
        super().__init__()
        inner_dim = dim_head * heads
        context_dim = default(context_dim, query_dim)
        self.scale = dim_head ** -0.5
        self.heads = heads

        self.to_q = torch.nn.Linear(query_dim, inner_dim, bias = False)
        self.to_kv = torch.nn.Linear(context_dim, inner_dim * 2, bias = False)
        self.to_out = torch.nn.Linear(inner_dim, query_dim, bias = False)

    def forward(self, x, context = None, mask = None):
        h = self.heads
        q = self.to_q(x)
        context = default(context, x)
        k, v = self.to_kv(context).chunk(2, dim = -1)
        q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h = h), (q, k, v))

        attn_weights = torch.matmul(q, k.transpose(-1, -2)) / self.scale

        mask_value = torch.finfo(attn_weights.dtype).min
        mask_value = torch.full([], mask_value, dtype=attn_weights.dtype).to(attn_weights.device)

        padding_mask = mask[:, :, None].repeat(self.heads, 1, 1).bool()

        attn_weights = torch.where(padding_mask, attn_weights, mask_value)
        attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1)

        out = torch.matmul(attn_weights, v)
        out = rearrange(out, '(b h) n d -> b n (h d)', h = h)
        return self.to_out(out)


class LatentAttentionModel(PreTrainedModel):
    config_class = LatentAttentionConfig

    def __init__(self, config: LatentAttentionConfig):
        super().__init__(config)
        ## cross-attention block
        num_latents, latent_dim, cross_heads, cross_dim_head = config.num_latents_value, config.latent_dim, config.num_cross_heads, config.cross_dim_head
        dim = config.hidden_dim
        # init latent_attention and latents
        self.cross_attend_blocks = torch.nn.ModuleList([
            PreNorm(latent_dim, Attention(latent_dim, dim, heads = cross_heads, dim_head = cross_dim_head),
                    context_dim = dim),
            PreNorm(latent_dim, FeedForward(latent_dim)),
        ])
        self.output_normalize = config.output_normalize
        self.register_parameter("latents", torch.nn.Parameter(torch.randn(num_latents, latent_dim)))

    def forward(self, hiddens, attention_mask: torch.Tensor=None):
        # cross-attention block
        cross_attn, cross_ff = self.cross_attend_blocks
        b, *_, device = *hiddens.shape, hiddens.device
        x = repeat(self.latents, 'n d -> b n d', b = b)
        hiddens = cross_attn(hiddens, context=x, mask=attention_mask) + hiddens
        hiddens = cross_ff(hiddens) + hiddens
        if attention_mask != None:
            s = torch.sum(hiddens * attention_mask.unsqueeze(-1).float(), dim=1)
            d = attention_mask.sum(dim=1, keepdim=True).float()
            hiddens = s / d
            if self.output_normalize:
                hiddens = torch.nn.functional.normalize(hiddens, p=2, dim=-1)
        return hiddens
    
class GigarEmbedModel(PreTrainedModel):
    config_class = GigarEmbedConfig
    _no_split_modules = ["LlamaDecoderLayer", "LatentAttentionModel"]
    
    def __init__(self, config: GigarEmbedConfig):
        super().__init__(config)
        self.latent_attention_model = AutoModel.from_config(config.latent_attention_config).float()
        self.model = AutoModel.from_config(
            config.text_config,
        ) if config.text_config is not None else None
        self.tokenizer = AutoTokenizer.from_pretrained(config.text_config._name_or_path) if config.text_config is not None else None
        self.padding_side = config.padding_side
        self.is_mask_instruction = config.is_mask_instruction
        self.add_eos = config.add_eos
        self.mask_type = config.mask_type
        if config.add_pad_token and self.tokenizer is not None:
            self.add_pad_token()
            
        self.latent_attention_model.apply(self._init_weights)

    def _init_weights(self, module):
        if isinstance(module, torch.nn.Linear):
            torch.nn.init.xavier_normal_(module.weight)

    def add_pad_token(self):
        self.tokenizer.pad_token_id = 0
        self.tokenizer.padding_side = self.padding_side
    
    def prepare_kwargs_from_batch(self, batch_dict: dict, instruction_lens: int, device: torch.device):
        batch_dict = move_to_device(batch_dict, device)
        attention_mask = batch_dict['attention_mask'].clone() if 'attention_mask' in batch_dict else None
        if (attention_mask is not None and
            self.padding_side == "right" and
            self.is_mask_instruction == True and
            instruction_lens > 0):
            # Mask out the instruction tokens for mean-pooling
            attention_mask[:, :instruction_lens] = 0
        features: GigarEmbedFeatures = {
            'input_ids': batch_dict['input_ids'],
            'attention_mask': batch_dict['attention_mask'],
            'pool_mask': attention_mask,
        }
        return features

    @torch.no_grad()
    def _do_encode(self,
        prompts: List[str],
        batch_size: int=1,
        instruction: str="",
        max_length: int=4096,
        num_workers: int=32,
        **kwargs
    ) -> Union[np.ndarray, torch.FloatTensor]:
        dataset: Dataset = Dataset.from_dict({'input_texts': prompts})
        dataset.set_transform(partial(input_transform_func,
                                      self.tokenizer,
                                      max_length=max_length,
                                      instruction=instruction))

        data_collator = DataCollatorWithPadding(self.tokenizer)
        data_loader = DataLoader(
            dataset,
            batch_size=batch_size,
            shuffle=False,
            drop_last=False,
            num_workers=num_workers,
            collate_fn=data_collator,
            pin_memory=True)

        if self.padding_side == "right" and self.is_mask_instruction == True and len(instruction) > 0:
            instruction_lens = len(self.tokenizer.tokenize(instruction))
        else:
            instruction_lens = 0

        encoded_embeds = []
        device = next(self.model.parameters()).device
        for batch_dict in tqdm(data_loader, desc='encoding', mininterval=10):
            features = self.prepare_kwargs_from_batch(batch_dict, instruction_lens, device=device)
            embeds=self(**features)["sentence_embeddings"].squeeze(1)
            encoded_embeds.append(embeds)
        encoded_embeds = torch.cat(encoded_embeds, axis=0)
        if "return_numpy" in kwargs and kwargs.get("return_numpy"):
            encoded_embeds = encoded_embeds.cpu().detach().numpy()
        return encoded_embeds

    def forward(self, input_ids: torch.Tensor, attention_mask: torch.Tensor, pool_mask: Optional[torch.Tensor]=None, 
                return_dict: bool=True, **kwargs):
        kwargs.pop('token_type_ids', None)
        outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, **kwargs)
        
        embeds = self.latent_attention_model(
            outputs.last_hidden_state,
            pool_mask,
        )
        if not return_dict:
            return (embeds,)
        return {"sentence_embeddings": embeds}
    
    
    @torch.no_grad()
    def encode(self, prompts: List[str], instruction: str="", max_length: int=4096, **kwargs):
        if self.padding_side == "right" and self.is_mask_instruction == True and len(instruction) > 0:
            instruction_lens = len(self.tokenizer.tokenize(instruction))
        else:
            instruction_lens = 0
        
        device = next(self.model.parameters()).device
        batch_dict = input_transform_func(self.tokenizer,
                                          {"input_texts": [prompt for prompt in prompts]},
                                          max_length=max_length,
                                          instruction=instruction)

        features: GigarEmbedFeatures = self.prepare_kwargs_from_batch(batch_dict, instruction_lens, device=device)
        return self(**features)["sentence_embeddings"].squeeze(1)


## AutoModel Register
AutoModel.register(GigarEmbedConfig, GigarEmbedModel)
AutoModel.register(LatentAttentionConfig, LatentAttentionModel)
AutoModel.register(BidirectionalLlamaConfig, BidirectionalLlamaModel)

## Register for auto class
GigarEmbedModel.register_for_auto_class("AutoModel")
LatentAttentionModel.register_for_auto_class("AutoModel")
BidirectionalLlamaModel.register_for_auto_class("AutoModel")