File size: 18,792 Bytes
39e275d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 |
from typing import List, Union, Dict, Mapping, Optional, Tuple, TypedDict
import torch
import os
import json
import numpy as np
from functools import partial
from contextlib import nullcontext
from transformers import AutoModel, PreTrainedTokenizerFast, BatchEncoding, DataCollatorWithPadding
from transformers.modeling_utils import PreTrainedModel
from transformers.models.auto import AutoTokenizer
from transformers.models.llama.modeling_llama import LLAMA_INPUTS_DOCSTRING
from transformers.modeling_outputs import BaseModelOutputWithPast
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_attention_mask_for_sdpa
from transformers import LlamaModel, LlamaConfig
from transformers.cache_utils import Cache, DynamicCache
from transformers.utils import (
add_start_docstrings_to_model_forward,
logging,
)
from einops import rearrange, repeat
from tqdm.auto import tqdm
from datasets import Dataset
from torch.utils.data import DataLoader
from .configuration_gigarembed import GigarEmbedConfig, LatentAttentionConfig, BidirectionalLlamaConfig
logger = logging.get_logger(__name__)
class GigarEmbedFeatures(TypedDict):
input_dict: torch.Tensor
attention_mask: torch.Tensor
pool_mask: torch.Tensor
class BidirectionalLlamaModel(LlamaModel):
config_class = BidirectionalLlamaConfig
def __init__(self, config: LlamaConfig):
super().__init__(config)
for layer in self.layers:
layer.self_attn.is_causal = False
self._attn_implementation = "eager"
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
past_key_values_length = 0
if use_cache:
use_legacy_cache = not isinstance(past_key_values, Cache)
if use_legacy_cache:
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
past_key_values_length = past_key_values.get_usable_length(seq_length)
if position_ids is None:
device = input_ids.device if input_ids is not None else inputs_embeds.device
position_ids = torch.arange(
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
)
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
else:
position_ids = position_ids.view(-1, seq_length).long()
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache:
is_padding_right = attention_mask[:, -1].sum().item() != batch_size
if is_padding_right:
raise ValueError(
"You are attempting to perform batched generation with padding_side='right'"
" this may lead to unexpected behaviour for Flash Attention version of Llama. Make sure to "
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
)
if self._attn_implementation == "flash_attention_2":
# 2d mask is passed through the layers
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
elif self._attn_implementation == "sdpa" and not output_attentions:
# output_attentions=True can not be supported when using SDPA, and we fall back on
# the manual implementation that requires a 4D causal mask in all cases.
attention_mask = _prepare_4d_attention_mask_for_sdpa(
attention_mask, inputs_embeds.dtype
)
else:
# 4d mask is passed through the layers
attention_mask = _prepare_4d_attention_mask(
attention_mask, inputs_embeds.dtype,
)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
position_embeddings=position_embeddings
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
position_embeddings=position_embeddings
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = None
if use_cache:
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
def _move_to_device(maybe_tensor, device: torch.device):
if torch.is_tensor(maybe_tensor):
return maybe_tensor.to(device, non_blocking=device.type == "cuda")
elif isinstance(maybe_tensor, dict):
return {key: _move_to_device(value, device) for key, value in maybe_tensor.items()}
elif isinstance(maybe_tensor, list):
return [_move_to_device(x, device) for x in maybe_tensor]
elif isinstance(maybe_tensor, tuple):
return tuple([_move_to_device(x, device) for x in maybe_tensor])
elif isinstance(maybe_tensor, Mapping):
return type(maybe_tensor)({k: _move_to_device(v, device) for k, v in maybe_tensor.items()})
else:
return maybe_tensor
def move_to_device(sample, device: torch.device):
if device.type == "cpu":
return sample
if len(sample) == 0:
return {}
return _move_to_device(sample, device)
def input_transform_func(
tokenizer: PreTrainedTokenizerFast,
examples: Dict[str, List],
max_length: int,
instruction: str,
) -> BatchEncoding:
examples['input_texts'] = [instruction + input_example for input_example in examples['input_texts']]
batch_dict = tokenizer(
examples['input_texts'],
max_length=max_length,
padding=True,
return_token_type_ids=False,
return_tensors="pt",
truncation=True)
return batch_dict
class PreNorm(torch.nn.Module):
def __init__(self, dim, fn, context_dim = None):
super().__init__()
# TODO remove this layer, we don't use it
def forward(self, x, **kwargs):
return x
class GEGLU(torch.nn.Module):
def forward(self, x):
x, gates = x.chunk(2, dim = -1)
return x * torch.nn.functional.gelu(gates)
class FeedForward(torch.nn.Module):
def __init__(self, dim, mult = 4):
super().__init__()
self.net = torch.nn.Sequential(
torch.nn.Linear(dim, 2 * dim * mult),
GEGLU(),
torch.nn.Linear(dim * mult, dim)
)
def forward(self, x):
return self.net(x)
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
class Attention(torch.nn.Module):
def __init__(self, query_dim, context_dim = None, heads = 8, dim_head = 64):
super().__init__()
inner_dim = dim_head * heads
context_dim = default(context_dim, query_dim)
self.scale = dim_head ** -0.5
self.heads = heads
self.to_q = torch.nn.Linear(query_dim, inner_dim, bias = False)
self.to_kv = torch.nn.Linear(context_dim, inner_dim * 2, bias = False)
self.to_out = torch.nn.Linear(inner_dim, query_dim, bias = False)
def forward(self, x, context = None, mask = None):
h = self.heads
q = self.to_q(x)
context = default(context, x)
k, v = self.to_kv(context).chunk(2, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h = h), (q, k, v))
attn_weights = torch.matmul(q, k.transpose(-1, -2)) / self.scale
mask_value = torch.finfo(attn_weights.dtype).min
mask_value = torch.full([], mask_value, dtype=attn_weights.dtype).to(attn_weights.device)
padding_mask = mask[:, :, None].repeat(self.heads, 1, 1).bool()
attn_weights = torch.where(padding_mask, attn_weights, mask_value)
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1)
out = torch.matmul(attn_weights, v)
out = rearrange(out, '(b h) n d -> b n (h d)', h = h)
return self.to_out(out)
class LatentAttentionModel(PreTrainedModel):
config_class = LatentAttentionConfig
def __init__(self, config: LatentAttentionConfig):
super().__init__(config)
## cross-attention block
num_latents, latent_dim, cross_heads, cross_dim_head = config.num_latents_value, config.latent_dim, config.num_cross_heads, config.cross_dim_head
dim = config.hidden_dim
# init latent_attention and latents
self.cross_attend_blocks = torch.nn.ModuleList([
PreNorm(latent_dim, Attention(latent_dim, dim, heads = cross_heads, dim_head = cross_dim_head),
context_dim = dim),
PreNorm(latent_dim, FeedForward(latent_dim)),
])
self.output_normalize = config.output_normalize
self.register_parameter("latents", torch.nn.Parameter(torch.randn(num_latents, latent_dim)))
def forward(self, hiddens, attention_mask: torch.Tensor=None):
# cross-attention block
cross_attn, cross_ff = self.cross_attend_blocks
b, *_, device = *hiddens.shape, hiddens.device
x = repeat(self.latents, 'n d -> b n d', b = b)
hiddens = cross_attn(hiddens, context=x, mask=attention_mask) + hiddens
hiddens = cross_ff(hiddens) + hiddens
if attention_mask != None:
s = torch.sum(hiddens * attention_mask.unsqueeze(-1).float(), dim=1)
d = attention_mask.sum(dim=1, keepdim=True).float()
hiddens = s / d
if self.output_normalize:
hiddens = torch.nn.functional.normalize(hiddens, p=2, dim=-1)
return hiddens
class GigarEmbedModel(PreTrainedModel):
config_class = GigarEmbedConfig
_no_split_modules = ["LlamaDecoderLayer", "LatentAttentionModel"]
def __init__(self, config: GigarEmbedConfig):
super().__init__(config)
self.latent_attention_model = AutoModel.from_config(config.latent_attention_config).float()
self.model = AutoModel.from_config(
config.text_config,
) if config.text_config is not None else None
self.tokenizer = AutoTokenizer.from_pretrained(config.text_config._name_or_path) if config.text_config is not None else None
self.padding_side = config.padding_side
self.is_mask_instruction = config.is_mask_instruction
self.add_eos = config.add_eos
self.mask_type = config.mask_type
if config.add_pad_token and self.tokenizer is not None:
self.add_pad_token()
self.latent_attention_model.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, torch.nn.Linear):
torch.nn.init.xavier_normal_(module.weight)
def add_pad_token(self):
self.tokenizer.pad_token_id = 0
self.tokenizer.padding_side = self.padding_side
def prepare_kwargs_from_batch(self, batch_dict: dict, instruction_lens: int, device: torch.device):
batch_dict = move_to_device(batch_dict, device)
attention_mask = batch_dict['attention_mask'].clone() if 'attention_mask' in batch_dict else None
if (attention_mask is not None and
self.padding_side == "right" and
self.is_mask_instruction == True and
instruction_lens > 0):
# Mask out the instruction tokens for mean-pooling
attention_mask[:, :instruction_lens] = 0
features: GigarEmbedFeatures = {
'input_ids': torch.tensor(batch_dict.get('input_ids').to(batch_dict.get('input_ids')).long()),
'attention_mask': batch_dict['attention_mask'],
'pool_mask': attention_mask,
}
return features
@torch.no_grad()
def _do_encode(self,
prompts: List[str],
batch_size: int=1,
instruction: str="",
max_length: int=4096,
num_workers: int=32,
**kwargs
) -> Union[np.ndarray, torch.FloatTensor]:
dataset: Dataset = Dataset.from_dict({'input_texts': prompts})
dataset.set_transform(partial(input_transform_func,
self.tokenizer,
max_length=max_length,
instruction=instruction))
data_collator = DataCollatorWithPadding(self.tokenizer)
data_loader = DataLoader(
dataset,
batch_size=batch_size,
shuffle=False,
drop_last=False,
num_workers=num_workers,
collate_fn=data_collator,
pin_memory=True)
if self.padding_side == "right" and self.is_mask_instruction == True and len(instruction) > 0:
instruction_lens = len(self.tokenizer.tokenize(instruction))
else:
instruction_lens = 0
encoded_embeds = []
device = next(self.model.parameters()).device
for batch_dict in tqdm(data_loader, desc='encoding', mininterval=10):
features = self.prepare_kwargs_from_batch(batch_dict, instruction_lens, device=device)
embeds=self(**features)["sentence_embeddings"].squeeze(1)
encoded_embeds.append(embeds)
encoded_embeds = torch.cat(encoded_embeds, axis=0)
if "return_numpy" in kwargs and kwargs.get("return_numpy"):
encoded_embeds = encoded_embeds.cpu().detach().numpy()
return encoded_embeds
def forward(self, input_ids: torch.Tensor, attention_mask: torch.Tensor, pool_mask: Optional[torch.Tensor]=None,
return_dict: bool=True, **kwargs):
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, **kwargs)
embeds = self.latent_attention_model(
outputs.last_hidden_state,
attention_mask,
)
if not return_dict:
return (embeds,)
return {"sentence_embeddings": embeds}
@torch.no_grad()
def encode(self, prompts: List[str], instruction: str="", max_length: int=4096, **kwargs):
if self.padding_side == "right" and self.is_mask_instruction == True and len(instruction) > 0:
instruction_lens = len(self.tokenizer.tokenize(instruction))
else:
instruction_lens = 0
device = next(self.model.parameters()).device
batch_dict = input_transform_func(self.tokenizer,
{"input_texts": [prompt for prompt in prompts]},
max_length=max_length,
instruction=instruction)
features: GigarEmbedFeatures = self.prepare_kwargs_from_batch(batch_dict, instruction_lens, device=device)
return self(**features)["sentence_embeddings"].squeeze(1)
## AutoModel Register
AutoModel.register(GigarEmbedConfig, GigarEmbedModel)
AutoModel.register(LatentAttentionConfig, LatentAttentionModel)
AutoModel.register(BidirectionalLlamaConfig, BidirectionalLlamaModel)
## Register for auto class
GigarEmbedModel.register_for_auto_class("AutoModel")
LatentAttentionModel.register_for_auto_class("AutoModel")
BidirectionalLlamaModel.register_for_auto_class("AutoModel")
|