prajdabre commited on
Commit
679e428
1 Parent(s): 6a40a8b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +14 -11
README.md CHANGED
@@ -6,19 +6,24 @@ Usage:
6
  from transformers import MBartForConditionalGeneration, AutoModelForSeq2SeqLM
7
  from transformers import AlbertTokenizer, AutoTokenizer
8
 
9
- tokenizer = AlbertTokenizer.from_pretrained("prajdabre/IndicBARTTokenizer", do_lower_case=False, use_fast=False, keep_accents=True)
10
 
11
- # Or use tokenizer = AutoTokenizer.from_pretrained("prajdabre/IndicBARTTokenizer", do_lower_case=False, use_fast=False, keep_accents=True)
12
 
13
- model = MBartForConditionalGeneration.from_pretrained("prajdabre/IndicBART")
14
 
15
- # Or use model = AutoModelForSeq2SeqLM.from_pretrained("prajdabre/IndicBART")
16
 
 
 
 
 
 
17
 
18
  # First tokenize the input and outputs. The format below is how IndicBART was trained so the input should be "Sentence </s> <2xx>" where xx is the language code. Similarly, the output should be "<2yy> Sentence </s>".
19
- inp = tokenizer("I am a boy <\/s> <2en>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids
20
 
21
- out = tokenizer("<2hi> मैं एक लड़का हूँ <\/s>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids
22
 
23
  model_outputs=model(input_ids=inp, decoder_input_ids=out[:,0:-1], labels=out[:,1:])
24
 
@@ -32,7 +37,7 @@ model_outputs.logits
32
 
33
  model.eval() # Det dropouts to zero
34
 
35
- model_output=model.generate(inp, use_cache=True, num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=tokenizer.pad_token_id, decoder_start_token_id=tokenizer(["<2en>"], add_special_tokens=False).input_ids[0][0])
36
 
37
 
38
  # Decode to get output strings
@@ -45,7 +50,7 @@ print(decoded_output) # I am a boy
45
 
46
  inp = tokenizer("I am [MASK] </s> <2en>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids
47
 
48
- model_output=model.generate(inp, use_cache=True, num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=tokenizer.pad_token_id, decoder_start_token_id=tokenizer(["<2en>"], add_special_tokens=False).input_ids[0][0])
49
 
50
  decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
51
 
@@ -54,6 +59,4 @@ print(decoded_output) # I am happy
54
 
55
  Notes:
56
  1. This is compatible with the latest version of transformers but was developed with version 4.3.2 so consider using 4.3.2 if possible.
57
- 2. The tokenizer repo is kept separate from the model repo because unlike mBART-25 and mBART-50 which use a BPE model (MBartTokenizer class) whereas we use the sentencepiece model (AlbertTokenizer class).
58
- 3. Currently, keeping the tokenizer and model files in the same repo complicates things so keeping them separate is a temporary solution. This will be fixed in future versions.
59
- 4. While I have only shown how to let logits and loss and how to generate outputs, you can do pretty much everything the MBartForConditionalGeneration class can do as in https://huggingface.co/docs/transformers/model_doc/mbart#transformers.MBartForConditionalGeneration
 
6
  from transformers import MBartForConditionalGeneration, AutoModelForSeq2SeqLM
7
  from transformers import AlbertTokenizer, AutoTokenizer
8
 
9
+ tokenizer = AutoTokenizer.from_pretrained("prajdabre/IndicBARTTokenizer", do_lower_case=False, use_fast=False, keep_accents=True)
10
 
11
+ # Or use tokenizer = AlbertTokenizer.from_pretrained("prajdabre/IndicBARTTokenizer", do_lower_case=False, use_fast=False, keep_accents=True)
12
 
13
+ model = AutoModelForSeq2SeqLM.from_pretrained("prajdabre/IndicBART")
14
 
15
+ # Or use model = MBartForConditionalGeneration.from_pretrained("prajdabre/IndicBART")
16
 
17
+ # Some initial mapping
18
+ bos_id = tokenizer._convert_token_to_id_with_added_voc("<s>")
19
+ eos_id = tokenizer._convert_token_to_id_with_added_voc("</s>")
20
+ pad_id = tokenizer._convert_token_to_id_with_added_voc("<pad>")
21
+ # To get lang_id use any of ['<2as>', '<2bn>', '<2en>', '<2gu>', '<2hi>', '<2kn>', '<2ml>', '<2mr>', '<2or>', '<2pa>', '<2ta>', '<2te>']
22
 
23
  # First tokenize the input and outputs. The format below is how IndicBART was trained so the input should be "Sentence </s> <2xx>" where xx is the language code. Similarly, the output should be "<2yy> Sentence </s>".
24
+ inp = tokenizer("I am a boy </s> <2en>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids # tensor([[ 466, 1981, 80, 25573, 64001, 64004]])
25
 
26
+ out = tokenizer("<2hi> मैं एक लड़का हूँ </s>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids # tensor([[64006, 942, 43, 32720, 8384, 64001]])
27
 
28
  model_outputs=model(input_ids=inp, decoder_input_ids=out[:,0:-1], labels=out[:,1:])
29
 
 
37
 
38
  model.eval() # Det dropouts to zero
39
 
40
+ model_output=model.generate(inp, use_cache=True, num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2en>"))
41
 
42
 
43
  # Decode to get output strings
 
50
 
51
  inp = tokenizer("I am [MASK] </s> <2en>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids
52
 
53
+ model_output=model.generate(inp, use_cache=True, num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2en>"))
54
 
55
  decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
56
 
 
59
 
60
  Notes:
61
  1. This is compatible with the latest version of transformers but was developed with version 4.3.2 so consider using 4.3.2 if possible.
62
+ 2. While I have only shown how to let logits and loss and how to generate outputs, you can do pretty much everything the MBartForConditionalGeneration class can do as in https://huggingface.co/docs/transformers/model_doc/mbart#transformers.MBartForConditionalGeneration