prajdabre commited on
Commit
c841fb8
1 Parent(s): 2205085

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +46 -0
README.md ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ This is the IndicBART model. For detailed documentation look here: https://indicnlp.ai4bharat.org/indic-bart/ and https://github.com/AI4Bharat/indic-bart/
2
+
3
+ Usage:
4
+
5
+ from transformers import MBartForConditionalGeneration
6
+ from transformers import AlbertTokenizer
7
+
8
+ tokenizer = AlbertTokenizer.from_pretrained("prajdabre/IndicBARTTokenizer", do_lower_case=False, use_fast=False, keep_accents=True)
9
+
10
+ model = MBartForConditionalGeneration.from_pretrained("prajdabre/IndicBART")
11
+
12
+ # First tokenize the input and outputs. The format below is how IndicBART was trained so the input should be "Sentence </s> <2xx>" where xx is the language code. Similarly, the output should be "<2yy> Sentence </s>".
13
+ inp = tokenizer("I am a boy </s> <2en>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids
14
+ out = tokenizer("<2hi> मैं एक लड़का हूँ </s>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids
15
+
16
+ model_outputs=model(input_ids=inp, decoder_input_ids=out[:,0:-1], labels=out[:,1:])
17
+
18
+ # For loss
19
+ model_outputs.loss ## This is not label smoothed.
20
+
21
+ # For logits
22
+ model_outputs.logits
23
+
24
+ # For generation. Pardon the messiness. Note the decoder_start_token_id.
25
+
26
+ model_output=model.generate(inp, use_cache=True, num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer(["</s>"], add_special_tokens=False).input_ids[0][0], decoder_start_token_id=tokenizer(["<2en>"], add_special_tokens=False).input_ids[0][0], bos_token_id=tokenizer(["<s>"], add_special_tokens=False).input_ids[0][0])
27
+
28
+
29
+ # Decode to get output strings
30
+
31
+ decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
32
+ print(decoded_output) # I am a boy
33
+
34
+ # What if we mask?
35
+
36
+ inp = tokenizer("I am [MASK] </s> <2en>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids
37
+ model_output=model.generate(inp, use_cache=True, num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer(["</s>"], add_special_tokens=False).input_ids[0][0], decoder_start_token_id=tokenizer(["<2en>"], add_special_tokens=False).input_ids[0][0], bos_token_id=tokenizer(["<s>"], add_special_tokens=False).input_ids[0][0])
38
+ decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
39
+ print(decoded_output) # I am happy
40
+
41
+
42
+ Notes:
43
+ 1. This is compatible with the latest version of transformers but was developed with version 4.3.2 so consider using 4.3.2 if possible.
44
+ 2. The tokenizer repo is kept separate from the model repo because unlike mBART-25 and mBART-50 which use a BPE model (MBartTokenizer class) whereas we use the sentencepiece model (AlbertTokenizer class).
45
+ 3. Currently, keeping the tokenizer and model files in the same repo complicates things so keeping them separate is a temporary solution. This will be fixed in future versions.
46
+ 4. While I have only shown how to let logits and loss and how to generate outputs, you can do pretty much everything the MBartForConditionalGeneration class can do as in https://huggingface.co/docs/transformers/model_doc/mbart#transformers.MBartForConditionalGeneration