---
tags:
- sentence-summarization
- multilingual
- nlp
- indicnlp
datasets:
- ai4bharat/IndicSentenceSummarization
language:
- as
- bn
- gu
- hi
- kn
- ml
- mr
- or
- pa
- ta
- te
license:
- mit
widget:
- जम्मू एवं कश्मीर के अनंतनाग जिले में शनिवार को सुरक्षाबलों के साथ मुठभेड़ में दो आतंकवादियों को मार गिराया गया। <2hi>
---
# MultiIndicSentenceSummarization
This repository contains the [IndicBART](https://huggingface.co/ai4bharat/IndicBART) checkpoint finetuned on the 11 languages of [IndicSentenceSummarization](https://huggingface.co/datasets/ai4bharat/IndicSentenceSummarization) dataset. For finetuning details,
see the [paper](https://arxiv.org/abs/2203.05437).
- Supported languages: Assamese, Bengali, Gujarati, Hindi, Marathi, Odiya, Punjabi, Kannada, Malayalam, Tamil, and Telugu. Not all of these languages are supported by mBART50 and mT5.
- The model is much smaller than the mBART and mT5(-base) models, so less computationally expensive for decoding.
- Trained on large Indic language corpora (431K sentences).
- All languages, have been represented in Devanagari script to encourage transfer learning among the related languages.
## Using this model in `transformers`
```
from transformers import MBartForConditionalGeneration, AutoModelForSeq2SeqLM
from transformers import AlbertTokenizer, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("ai4bharat/MultiIndicSentenceSummarization", do_lower_case=False, use_fast=False, keep_accents=True)
# Or use tokenizer = AlbertTokenizer.from_pretrained("ai4bharat/MultiIndicSentenceSummarization", do_lower_case=False, use_fast=False, keep_accents=True)
model = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/MultiIndicSentenceSummarization")
# Or use model = MBartForConditionalGeneration.from_pretrained("ai4bharat/MultiIndicSentenceSummarization")
# Some initial mapping
bos_id = tokenizer._convert_token_to_id_with_added_voc("")
eos_id = tokenizer._convert_token_to_id_with_added_voc("")
pad_id = tokenizer._convert_token_to_id_with_added_voc("")
# To get lang_id use any of ['<2as>', '<2bn>', '<2en>', '<2gu>', '<2hi>', '<2kn>', '<2ml>', '<2mr>', '<2or>', '<2pa>', '<2ta>', '<2te>']
# First tokenize the input. The format below is how IndicBART was trained so the input should be "Sentence <2xx>" where xx is the language code. Similarly, the output should be "<2yy> Sentence ".
inp = tokenizer("जम्मू एवं कश्मीर के अनंतनाग जिले में शनिवार को सुरक्षाबलों के साथ मुठभेड़ में दो आतंकवादियों को मार गिराया गया। <2hi>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids
# For generation. Pardon the messiness. Note the decoder_start_token_id.
model_output=model.generate(inp, use_cache=True,no_repeat_ngram_size=3, num_beams=5, length_penalty=0.8, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2hi>"))
# Decode to get output strings
decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
print(decoded_output) # जम्मू एवं कश्मीरः अनंतनाग में सुरक्षाबलों के साथ मुठभेड़ में दो आतंकवादी ढेर
# Note that if your output language is not Hindi or Marathi, you should convert its script from Devanagari to the desired language using the Indic NLP Library.
```
# Note:
If you wish to use any language written in a non-Devanagari script, then you should first convert it to Devanagari using the Indic NLP Library. After you get the output, you should convert it back into the original script.
## Benchmarks
Scores on the `IndicSentenceSummarization` test sets are as follows:
Language | Rouge-1 / Rouge-2 / Rouge-L
---------|----------------------------
as | 60.46 / 46.77 / 59.29
bn | 51.12 / 34.91 / 49.29
gu | 47.89 / 29.97 / 45.92
hi | 50.7 / 28.11 / 45.34
kn | 77.93 / 70.03 / 77.32
ml | 67.7 / 54.42 / 66.42
mr | 48.06 / 26.98 / 46.5
or | 45.2 / 23.66 / 43.65
pa | 55.96 / 37.2 / 52.22
ta | 58.85 / 38.97 / 56.83
te | 54.81 / 35.28 / 53.44
## Citation
If you use this model, please cite the following paper:
```
@inproceedings{Kumar2022IndicNLGSM,
title={IndicNLG Suite: Multilingual Datasets for Diverse NLG Tasks in Indic Languages},
author={Aman Kumar and Himani Shrotriya and Prachi Sahu and Raj Dabre and Ratish Puduppully and Anoop Kunchukuttan and Amogh Mishra and Mitesh M. Khapra and Pratyush Kumar},
year={2022},
url = "https://arxiv.org/abs/2203.05437"
}
```