update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: ner-2
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# ner-2
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [PlanTL-GOB-ES/bsc-bio-ehr-es-pharmaconer](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es-pharmaconer) on an unknown dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.1791
|
23 |
+
- Precision: 0.5224
|
24 |
+
- Recall: 0.6222
|
25 |
+
- F1: 0.5680
|
26 |
+
- Accuracy: 0.9631
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 7e-05
|
46 |
+
- train_batch_size: 32
|
47 |
+
- eval_batch_size: 8
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 30
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
+
| No log | 1.0 | 29 | 0.2584 | 0.0 | 0.0 | 0.0 | 0.9365 |
|
58 |
+
| No log | 2.0 | 58 | 0.2386 | 0.1364 | 0.0133 | 0.0243 | 0.9458 |
|
59 |
+
| No log | 3.0 | 87 | 0.2312 | 0.2368 | 0.04 | 0.0684 | 0.9466 |
|
60 |
+
| No log | 4.0 | 116 | 0.1806 | 0.2809 | 0.2222 | 0.2481 | 0.9422 |
|
61 |
+
| No log | 5.0 | 145 | 0.1446 | 0.4453 | 0.2711 | 0.3370 | 0.9558 |
|
62 |
+
| No log | 6.0 | 174 | 0.1575 | 0.3778 | 0.3022 | 0.3358 | 0.9493 |
|
63 |
+
| No log | 7.0 | 203 | 0.1255 | 0.5081 | 0.4178 | 0.4585 | 0.9601 |
|
64 |
+
| No log | 8.0 | 232 | 0.1290 | 0.4599 | 0.4844 | 0.4719 | 0.9596 |
|
65 |
+
| No log | 9.0 | 261 | 0.1383 | 0.4844 | 0.4844 | 0.4844 | 0.9597 |
|
66 |
+
| No log | 10.0 | 290 | 0.1534 | 0.4313 | 0.6133 | 0.5064 | 0.9519 |
|
67 |
+
| No log | 11.0 | 319 | 0.1575 | 0.4423 | 0.6133 | 0.5140 | 0.9560 |
|
68 |
+
| No log | 12.0 | 348 | 0.1437 | 0.5888 | 0.5156 | 0.5498 | 0.9670 |
|
69 |
+
| No log | 13.0 | 377 | 0.1605 | 0.5 | 0.5911 | 0.5418 | 0.9589 |
|
70 |
+
| No log | 14.0 | 406 | 0.1529 | 0.5459 | 0.5289 | 0.5372 | 0.9640 |
|
71 |
+
| No log | 15.0 | 435 | 0.1569 | 0.5097 | 0.5867 | 0.5455 | 0.9618 |
|
72 |
+
| No log | 16.0 | 464 | 0.1656 | 0.4980 | 0.5644 | 0.5292 | 0.9607 |
|
73 |
+
| No log | 17.0 | 493 | 0.1602 | 0.5583 | 0.5956 | 0.5763 | 0.9622 |
|
74 |
+
| 0.0843 | 18.0 | 522 | 0.1767 | 0.4897 | 0.6356 | 0.5532 | 0.9589 |
|
75 |
+
| 0.0843 | 19.0 | 551 | 0.1642 | 0.5551 | 0.6044 | 0.5787 | 0.9641 |
|
76 |
+
| 0.0843 | 20.0 | 580 | 0.1635 | 0.6418 | 0.5733 | 0.6056 | 0.9679 |
|
77 |
+
| 0.0843 | 21.0 | 609 | 0.1706 | 0.5423 | 0.6267 | 0.5814 | 0.9635 |
|
78 |
+
| 0.0843 | 22.0 | 638 | 0.1691 | 0.5437 | 0.6089 | 0.5744 | 0.9638 |
|
79 |
+
| 0.0843 | 23.0 | 667 | 0.1743 | 0.5357 | 0.6 | 0.5660 | 0.9631 |
|
80 |
+
| 0.0843 | 24.0 | 696 | 0.1800 | 0.5176 | 0.6533 | 0.5776 | 0.9627 |
|
81 |
+
| 0.0843 | 25.0 | 725 | 0.1789 | 0.5 | 0.6 | 0.5455 | 0.9620 |
|
82 |
+
| 0.0843 | 26.0 | 754 | 0.1754 | 0.5388 | 0.5867 | 0.5617 | 0.9638 |
|
83 |
+
| 0.0843 | 27.0 | 783 | 0.1797 | 0.5164 | 0.6311 | 0.5680 | 0.9627 |
|
84 |
+
| 0.0843 | 28.0 | 812 | 0.1816 | 0.5321 | 0.6267 | 0.5755 | 0.9633 |
|
85 |
+
| 0.0843 | 29.0 | 841 | 0.1793 | 0.5222 | 0.6267 | 0.5697 | 0.9631 |
|
86 |
+
| 0.0843 | 30.0 | 870 | 0.1791 | 0.5224 | 0.6222 | 0.5680 | 0.9631 |
|
87 |
+
|
88 |
+
|
89 |
+
### Framework versions
|
90 |
+
|
91 |
+
- Transformers 4.28.1
|
92 |
+
- Pytorch 2.0.0+cu118
|
93 |
+
- Datasets 2.11.0
|
94 |
+
- Tokenizers 0.13.3
|