File size: 2,351 Bytes
6d8d858 3c35ca7 6d8d858 8097958 6d8d858 3c35ca7 6d8d858 3c35ca7 6d8d858 3c35ca7 6d8d858 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
language: "sw"
inference: false
tags:
- Vocoder
- HiFIGAN
- text-to-speech
- TTS
- speech-synthesis
- speechbrain
license: "apache-2.0"
datasets:
- LJSpeech
---
# Vocoder with HiFIGAN trained on LJSpeech
This repository provides all the necessary tools for using a [ALLFA Public](https://github.com/getalp/ALFFA_PUBLIC/tree/master/ASR/SWAHILI).
The pre-trained model takes in input a spectrogram and produces a waveform in output. Typically, a vocoder is used after a TTS model that converts an input text into a spectrogram.
## Install SpeechBrain
```bash
pip install speechbrain
```
Please notice that we encourage you to read our tutorials and learn more about
[SpeechBrain](https://speechbrain.github.io).
### Using the Vocoder
```python
import torch
from speechbrain.pretrained import HIFIGAN
hifi_gan = HIFIGAN.from_hparams(source="aioxlabs/hifigan-swahili", savedir="tmpdir")
mel_specs = torch.rand(2, 80,298)
waveforms = hifi_gan.decode_batch(mel_specs)
```
### Using the Vocoder with the TTS
```python
import torchaudio
from speechbrain.pretrained import Tacotron2
from speechbrain.pretrained import HIFIGAN
# Intialize TTS (tacotron2) and Vocoder (HiFIGAN)
tacotron2 = Tacotron2.from_hparams(source="aioxlabs/tacotron-swahili", savedir="tmpdir_tts")
hifi_gan = HIFIGAN.from_hparams(source="aioxlabs/hifigan-swahili", savedir="tmpdir_vocoder")
# Running the TTS
mel_output, mel_length, alignment = tacotron2.encode_text("raisi wa jumhuri ya tanzania")
# Running Vocoder (spectrogram-to-waveform)
waveforms = hifi_gan.decode_batch(mel_output)
# Save the waverform
torchaudio.save('example_TTS.wav',waveforms.squeeze(1), 16000)
```
### Inference on GPU
To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method.
### Training
The model was trained with SpeechBrain.
To train it from scratch follow these steps:
1. Clone SpeechBrain:
```bash
git clone https://github.com/speechbrain/speechbrain/
```
2. Install it:
```bash
cd speechbrain
pip install -r requirements.txt
pip install -e .
```
3. Run Training:
```bash
cd recipes/LJSpeech/TTS/vocoder/hifi_gan/
python train.py hparams/train.yaml --data_folder /path/to/LJspeech
```
You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/19sLwV7nAsnUuLkoTu5vafURA9Fo2WZgG?usp=sharing). |