File size: 8,680 Bytes
cefd69e
 
 
4975b81
 
 
 
cefd69e
 
 
 
 
 
ad1aebb
 
 
 
cefd69e
 
 
 
 
14cd9f3
 
 
 
 
cefd69e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d00a29
14cd9f3
3d00a29
5272bef
3d00a29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14cd9f3
 
 
 
 
 
 
 
 
5272bef
3d00a29
5272bef
cefd69e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
---
license: apache-2.0
pipeline_tag: text-generation
datasets:
- aiplanet/buddhi-dataset
language:
- en
---

<p align="center" style="font-size:34px;"><b>Buddhi-128K-Chat</b></p>

# Buddhi-128K-Chat (7B) vLLM Inference: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/11_8W8FpKK-856QdRVJLyzbu9g-DMxNfg?usp=sharing)

# Read release article: [🔗 Introducing Buddhi: Open-Source Chat Model with a 128K Context Window 🔗 ](https://medium.aiplanet.com/introducing-buddhi-open-source-chat-model-with-a-128k-context-window-06a1848121d0)

![4.png](https://cdn-uploads.huggingface.co/production/uploads/630f3058236215d0b7078806/VUY0c4xOGpH9jTNmf6XNU.png)

## Model Description

Buddhi-128k-Chat is a general-purpose first chat model with 128K context length window. It is meticulously fine-tuned on the Mistral 7B Instruct, and optimised to handle an extended context length of up to 128,000 tokens using the innovative YaRN (Yet another Rope Extension) Technique. This enhancement allows Buddhi to maintain a deeper understanding of context in long documents or conversations, making it particularly adept at tasks requiring extensive context retention, such as comprehensive document summarization, detailed narrative generation, and intricate question-answering.

## Architecture
The Buddhi-128K-Chat model is fine-tuned on the Mistral-7B Instruct base model. We selected the Mistral 7B Instruct v0.2 as the parent model due to its superior reasoning capabilities. The architecture of the Mistral-7B model includes features like Grouped-Query Attention and Byte-fallback BPE tokenizer. Originally, this model has 32,768 maximum position embeddings. To increase the context size to 128K, we needed to modify the positional embeddings, which is where YaRN comes into play.

In our approach, we utilized the NTK-aware technique, which recommends alternative interpolation techniques for positional interpolation. One experimentation involved Dynamic-YARN, suggesting the dynamic value of the 's' scale factor. This is because during inference, the sequence length changes by 1 after every word prediction. By integrating these position embeddings with the Mistral-7B Instruct base model, we achieved the 128K model. 

Additionally, we fine-tuned the model on our dataset to contribute one of the very few 128K chat-based models available in the open-source community with greater reasoning capabilities than all of it. 

### Hardware requirements:
> For 128k Context Length
> - 80GB VRAM - A100 Preferred

> For 32k Context Length
> - 40GB VRAM - A100 Preferred

### vLLM - For Faster Inference

#### Installation

```
!pip install vllm
!pip install flash_attn # If Flash Attention 2 is supported by your System
```
Please check out [Flash Attention 2](https://github.com/Dao-AILab/flash-attention) Github Repository for more instructions on how to Install it.

**Implementation**:

> Note: The actual hardware requirements to run the model is roughly around 70GB VRAM. For experimentation, we are limiting the context length to 75K instead of 128K. This make it suitable for testing the model in 30-35 GB VRAM

```python
from vllm import LLM, SamplingParams

llm = LLM(
    model='aiplanet/buddhi-128k-chat-7b',
    trust_remote_code=True,
    dtype = 'bfloat16',
    gpu_memory_utilization=1,
    max_model_len= 75000 
)

prompts = [
  """<s> [INST] Please tell me a joke. [/INST] """,
  """<s> [INST] What is Machine Learning? [/INST] """
]

sampling_params = SamplingParams(
  temperature=0.8,
  top_p=0.95,
  max_tokens=1000
)

outputs = llm.generate(prompts, sampling_params)

for output in outputs:
    prompt = output.prompt
    generated_text = output.outputs[0].text
    print(generated_text)
    print("\n\n")

# we have also attached a colab notebook, that contains: 2 more experimentations: Long Essay and Entire Book
```

For Output, do check out the colab notebook: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/11_8W8FpKK-856QdRVJLyzbu9g-DMxNfg?usp=sharing)

### Transformers - Basic Implementation

```python
import torch
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig

bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_use_double_quant=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16
)

model_name = "aiplanet/Buddhi-128K-Chat"

model = AutoModelForCausalLM.from_pretrained(
  model_name,
  quantization_config=bnb_config,
  device_map="sequential",
  trust_remote_code=True
)

tokenizer = AutoTokenizer.from_pretrained(
  model,
  trust_remote_code=True
)

prompt = "<s> [INST] Please tell me a small joke. [/INST] "

tokens = tokenizer(prompt, return_tensors="pt").to("cuda")
outputs = model.generate(
  **tokens,
  max_new_tokens=100,
  do_sample=True,
  top_p=0.95,
  temperature=0.8,
)

decoded_output = tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0]
print(f"Output:\n{decoded_output[len(prompt):]}")
```

Output

```
Output:
Why don't scientists trust atoms?

Because they make up everything.
```


## Prompt Template for Buddi-128-Chat

In order to leverage instruction fine-tuning, your prompt should be surrounded by [INST] and [/INST] tokens. The very first instruction should begin with a begin of sentence id. The next instructions should not. The assistant generation will be ended by the end-of-sentence token id.

```
"<s>[INST] What is your favourite condiment? [/INST]"
"Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!</s> "
"[INST] Do you have mayonnaise recipes? [/INST]"

```

# Benchmarks

### Long Context Benchmark

<strong>LongICLBench Banking77</strong>
<div>
  
| Model                                   | 1R/2k | 2R/4K | 3R/7K | 4R/9K | 5R/14K |
|-----------------------------------------|-------|-------|-------|-------|--------|
| aiplanet/buddhi-128k-chat-7b            | 47.8  | 60.8  | 57.8  | 62.4  |  57.2  |
| NousResearch/Yarn-Mistral-7b-128k       | 31.6  | 68.6  | 68    | 47    |  65.6  |
| CallComply/zephyr-7b-beta-128k          | 40.2  | 41.2  | 33.6  | 03    |    0   |
| Eric111/Yarn-Mistral-7b-128k-DPO        | 28.6  | 62.8  | 58    | 41.6  |  59.8  |

</div>

<strong>Short Context Benchmark</strong>
<div>
  
| Model                             | # Params | Average | ARC (25-shot) | HellaSwag (10-shot) | Winogrande (5-shot) | TruthfulOA (0-shot) | MMLU (5-shot) |
|-----------------------------------|----------|---------|---------------|---------------------|---------------------|---------------------|---------------|
| aiplanet/buddhi-128k-chat-7b      | 7B       | 64.42   | 60.84         | 84                  | 77.27               | 65.72               | 60.42         |
| migtissera/Tess-XS-vl-3-yarn-128K | 7B       | 62.66   | 61.09         | 82.95               | 74.43               | 50.13               | 62.15         |
| migtissera/Tess-XS-v1-3-yarn-128K | 7B       | 62.49   | 61.6          | 82.96               | 74.74               | 50.2                | 62.1          |
| Eric111/Yarn-Mistral-7b-128k-DPO  | 7B       | 60.15   | 60.84         | 82.99               | 78.3                | 43.55               | 63.09         |
| NousResearch/Yam-Mistral-7b-128k  | 7B       | 59.42   | 59.64         | 82.5                | 76.95               | 41.78               | 63.02         |
| CallComply/openchat-3.5-0106-128k | 7B       | 59.38   | 64.25         | 77.31               | 77.66               | 46.5                | 57.58         |
| CallComply/zephyr-7b-beta-128k    | 7B       | 54.45   | 58.28         | 81                  | 74.74               | 46.1                | 53.57         |

</div>

## Get in Touch

 You can schedule a 1:1 meeting with our DevRel & Community Team to get started with AI Planet Open Source LLMs and GenAI Stack. Schedule the call here: [https://calendly.com/jaintarun](https://calendly.com/jaintarun)

 Stay tuned for more updates and be a part of the coding evolution. Join us on this exciting journey as we make AI accessible to all at AI Planet!


 ### Framework versions

- Transformers 4.39.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Accelerate 0.27.2
- flash_attn 2.5.6

 ### Citation

 ```
 @misc {Chaitanya890, lucifertrj ,
	author       = { Chaitanya Singhal, Tarun Jain },
	title        = { Buddhi-128k-Chat by AI Planet},
	year         = 2024,
	url          = { https://huggingface.co/aiplanet//Buddhi-128K-Chat },
	publisher    = { Hugging Face }
}
 ```