File size: 2,187 Bytes
e3fc8ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
license: apache-2.0
tags:
- summarization
- generated_from_trainer
metrics:
- rouge
model-index:
- name: mt5-base-wikinewssum-portuguese
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mt5-base-wikinewssum-portuguese
This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0428
- Rouge1: 9.4966
- Rouge2: 4.2224
- Rougel: 7.9845
- Rougelsum: 8.8641
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|
| No log | 1.0 | 334 | 2.2258 | 7.3686 | 2.9066 | 6.3167 | 6.8758 |
| No log | 2.0 | 668 | 2.1389 | 9.0551 | 3.8395 | 7.6578 | 8.4641 |
| No log | 3.0 | 1002 | 2.1030 | 9.2792 | 3.9352 | 7.8259 | 8.663 |
| No log | 4.0 | 1336 | 2.0841 | 9.337 | 4.0647 | 7.8662 | 8.693 |
| 3.2831 | 5.0 | 1670 | 2.0487 | 9.4244 | 4.0821 | 7.8633 | 8.7111 |
| 3.2831 | 6.0 | 2004 | 2.0580 | 9.4598 | 4.1598 | 7.9511 | 8.8299 |
| 3.2831 | 7.0 | 2338 | 2.0426 | 9.501 | 4.1885 | 7.9803 | 8.8612 |
| 3.2831 | 8.0 | 2672 | 2.0428 | 9.4966 | 4.2224 | 7.9845 | 8.8641 |
### Framework versions
- Transformers 4.13.0
- Pytorch 1.10.1
- Datasets 1.16.1
- Tokenizers 0.10.3
|