File size: 6,044 Bytes
7c413be 69d55a7 e0bd30d 69d55a7 e0bd30d 4ef1ded e0bd30d 4ef1ded e0bd30d 4ef1ded e0bd30d 4ef1ded e0bd30d 4ef1ded e0bd30d 4ef1ded e0bd30d 4ef1ded e0bd30d 7c413be 69d55a7 f4285a4 4ef1ded f4285a4 5fe89b1 f4285a4 a3fedd8 f4285a4 442244c f4285a4 4ac875c f4285a4 4ac875c f4285a4 e0bd30d 7d3e73b e0bd30d 4ef1ded |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
---
language:
- en
license: apache-2.0
tags:
- code
- finetune
- synthetic data
- text-generation-inference
- conversational
datasets:
- ajibawa-2023/OpenHermes-2.5-Code-290k
- teknium/OpenHermes-2.5
model-index:
- name: OpenHermes-2.5-Code-290k-13B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 57.34
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/OpenHermes-2.5-Code-290k-13B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 80.48
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/OpenHermes-2.5-Code-290k-13B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 56.53
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/OpenHermes-2.5-Code-290k-13B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 52.5
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/OpenHermes-2.5-Code-290k-13B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 74.82
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/OpenHermes-2.5-Code-290k-13B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 58.3
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/OpenHermes-2.5-Code-290k-13B
name: Open LLM Leaderboard
---
**OpenHermes-2.5-Code-290k-13B**
OpenHermes-2.5-Code-290k-13B is a state of the art Llama-2 Fine-tune, which is trained on additional code dataset.
This Model is much better than teknium's [model](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B). You can check the **Eval results** below.
This model is trained on my existing dataset [OpenHermes-2.5-Code-290k](https://huggingface.co/datasets/ajibawa-2023/OpenHermes-2.5-Code-290k).
This dataset is amalgamation of two datasets. I have used [OpenHermes-2.5](https://huggingface.co/datasets/teknium/OpenHermes-2.5) a super quality dataset made avaliable by teknium. Other datset is my own [Code-290k-ShareGPT](https://huggingface.co/datasets/ajibawa-2023/Code-290k-ShareGPT).
Dataset is in Vicuna/ShareGPT format. There are around **1.29 million** set of conversations. I have cleaned the dataset provided by Teknium and removed metadata such as "source" & "category" etc. This dataset has primarily synthetically generated instruction and chat samples.
This model has enhanced coding capabilities besides other capabilities such as **Blogging, story generation, Q&A and many more**.
**Training:**
Entire model was trained on 4 x A100 80GB. For 2 epoch, training took **21 Days**. Fschat & DeepSpeed codebase was used for training purpose. This was trained on Llama-2 by Meta.
This is a full fine tuned model. Links for quantized models will be updated soon.
**GPTQ, GGUF, AWQ & Exllama**
GPTQ: TBA
GGUF: [Link](https://huggingface.co/LoneStriker/OpenHermes-2.5-Code-290k-13B-GGUF)
AWQ: TBA
Exllama v2: [Link](https://huggingface.co/bartowski/OpenHermes-2.5-Code-290k-13B-exl2)
Special Thanks to [LoneStriker](https://huggingface.co/LoneStriker) and [bartowski](https://huggingface.co/bartowski/) for quantising.
**Example Prompt:**
```
This is a conversation with your helpful AI assistant. AI assistant can generate Code in various Programming Languages along with necessary explanation. It can generate Story, Blogs .....
Context
You are a helpful AI assistant.
USER: <prompt>
ASSISTANT:
```
You can modify above Prompt as per your requirement. I have used ShareGPT/Vicuna format v1.1 .
I want to say special Thanks to the Open Source community for helping & guiding me to better understand the AI/Model development.
Thank you for your love & support.
**Example Output**
I will update soon.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ajibawa-2023__OpenHermes-2.5-Code-290k-13B)
| Metric |Value|
|---------------------------------|----:|
|Avg. |63.33|
|AI2 Reasoning Challenge (25-Shot)|57.34|
|HellaSwag (10-Shot) |80.48|
|MMLU (5-Shot) |56.53|
|TruthfulQA (0-shot) |52.50|
|Winogrande (5-shot) |74.82|
|GSM8k (5-shot) |58.30| |