File size: 6,044 Bytes
7c413be
69d55a7
 
e0bd30d
69d55a7
 
 
 
 
 
e0bd30d
 
4ef1ded
e0bd30d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ef1ded
 
e0bd30d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ef1ded
 
e0bd30d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ef1ded
 
e0bd30d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ef1ded
 
e0bd30d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ef1ded
 
e0bd30d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ef1ded
 
e0bd30d
7c413be
69d55a7
 
 
f4285a4
4ef1ded
f4285a4
 
5fe89b1
f4285a4
 
 
 
 
 
 
 
a3fedd8
f4285a4
 
 
 
 
 
442244c
f4285a4
 
 
4ac875c
f4285a4
4ac875c
f4285a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0bd30d
7d3e73b
 
e0bd30d
 
 
 
 
 
 
 
 
 
 
4ef1ded
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
---
language:
- en
license: apache-2.0
tags:
- code
- finetune
- synthetic data
- text-generation-inference
- conversational
datasets:
- ajibawa-2023/OpenHermes-2.5-Code-290k
- teknium/OpenHermes-2.5
model-index:
- name: OpenHermes-2.5-Code-290k-13B
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 57.34
      name: normalized accuracy
    source:
      url: >-
        https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/OpenHermes-2.5-Code-290k-13B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 80.48
      name: normalized accuracy
    source:
      url: >-
        https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/OpenHermes-2.5-Code-290k-13B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 56.53
      name: accuracy
    source:
      url: >-
        https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/OpenHermes-2.5-Code-290k-13B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 52.5
    source:
      url: >-
        https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/OpenHermes-2.5-Code-290k-13B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 74.82
      name: accuracy
    source:
      url: >-
        https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/OpenHermes-2.5-Code-290k-13B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 58.3
      name: accuracy
    source:
      url: >-
        https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/OpenHermes-2.5-Code-290k-13B
      name: Open LLM Leaderboard
---

**OpenHermes-2.5-Code-290k-13B**

OpenHermes-2.5-Code-290k-13B is a state of the art Llama-2 Fine-tune, which is trained on additional code dataset.
This Model is much better than teknium's [model](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B). You can check the **Eval results** below.
This model is trained on my existing dataset [OpenHermes-2.5-Code-290k](https://huggingface.co/datasets/ajibawa-2023/OpenHermes-2.5-Code-290k). 
This dataset is amalgamation of two datasets. I have used [OpenHermes-2.5](https://huggingface.co/datasets/teknium/OpenHermes-2.5) a super quality dataset made avaliable by teknium. Other datset is my own [Code-290k-ShareGPT](https://huggingface.co/datasets/ajibawa-2023/Code-290k-ShareGPT). 
Dataset is in Vicuna/ShareGPT format. There are around **1.29 million** set of conversations. I have cleaned the dataset provided by Teknium and removed metadata such as "source" & "category" etc. This dataset has primarily synthetically generated instruction and chat samples. 

This model has enhanced coding capabilities besides other capabilities such as **Blogging, story generation, Q&A and many more**.

**Training:**

Entire model was trained on 4 x A100 80GB. For 2 epoch, training took **21 Days**. Fschat & DeepSpeed codebase was used for training purpose. This was trained on Llama-2 by Meta.


This is a full fine tuned model. Links for quantized models will be updated soon.


**GPTQ, GGUF, AWQ & Exllama**

GPTQ: TBA

GGUF: [Link](https://huggingface.co/LoneStriker/OpenHermes-2.5-Code-290k-13B-GGUF)

AWQ: TBA

Exllama v2: [Link](https://huggingface.co/bartowski/OpenHermes-2.5-Code-290k-13B-exl2)

Special Thanks to [LoneStriker](https://huggingface.co/LoneStriker) and [bartowski](https://huggingface.co/bartowski/) for quantising.



**Example Prompt:**
```
This is a conversation with your helpful AI assistant. AI assistant can generate Code in various Programming Languages along with necessary explanation. It can generate Story, Blogs .....

Context
You are a helpful AI assistant.

USER: <prompt>
ASSISTANT:
```

You can modify above Prompt as per your requirement. I have used ShareGPT/Vicuna format v1.1 .

I want to say special Thanks to the Open Source community for helping & guiding me to better understand the AI/Model development.

Thank you for your love & support.

**Example Output**

I will update soon.


# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ajibawa-2023__OpenHermes-2.5-Code-290k-13B)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |63.33|
|AI2 Reasoning Challenge (25-Shot)|57.34|
|HellaSwag (10-Shot)              |80.48|
|MMLU (5-Shot)                    |56.53|
|TruthfulQA (0-shot)              |52.50|
|Winogrande (5-shot)              |74.82|
|GSM8k (5-shot)                   |58.30|