--- license: apache-2.0 base_model: google/flan-t5-base tags: - generated_from_trainer metrics: - rouge model-index: - name: flan-t5-base-nvidia results: [] --- # flan-t5-base-nvidia This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) trained on [ajsbsd/datasets/nvidia-qa](https://huggingface.co/datasets/ajsbsd/nvidia-qa) Imported from Kaggle (https://www.kaggle.com/datasets/gondimalladeepesh/nvidia-documentation-question-and-answer-pairs) Q&A dataset for LLM finetuning about the NVIDIA about SDKs and blogs This model is a fine-tuned version of google/flan-t5-small trained on It achieves the following results on the evaluation set: - Loss: 1.7117 - Rouge1: 0.4290 - Rouge2: 0.2696 - Rougel: 0.3880 - Rougelsum: 0.3928 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | 2.4618 | 1.0 | 711 | 1.9707 | 0.3886 | 0.2185 | 0.3472 | 0.3522 | | 2.0575 | 2.0 | 1422 | 1.8104 | 0.4066 | 0.2407 | 0.3647 | 0.3701 | | 1.5839 | 3.0 | 2133 | 1.7351 | 0.4185 | 0.2558 | 0.3770 | 0.3821 | | 1.4314 | 4.0 | 2844 | 1.7079 | 0.4252 | 0.2655 | 0.3840 | 0.3892 | | 1.2582 | 5.0 | 3555 | 1.7117 | 0.4290 | 0.2696 | 0.3880 | 0.3928 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.14.7 - Tokenizers 0.15.0