File size: 13,460 Bytes
85cd890
 
 
 
 
 
 
 
 
 
 
 
 
 
4ad95de
85cd890
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ad95de
 
 
85cd890
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2c037e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
---
datasets:
- kinokokoro/ichikara-instruction-003
language:
- ja
base_model:
- llm-jp/llm-jp-3-13b
---

elyza-tasks-100-TV_0.jsonl の回答モデルの作成のためのコードです。
サンプルコードに対して以下の変更を行いスコア改善を試みました。
- データセットを ichikara-instruction-003 の全てのファイルを利用するよう変更
- 学習率(learning_rate) を 2e-5へ変更
- 累積勾配(gradient_accumulation_steps) を 4 に変更
- RoRAのRANK(LoraConfig r)を 32 に変更

自宅のPC(RTX3090) でコードを実行し、解答を出力しました。

```python

import wandb
import os

WANDB_API_KEY = "my-token"
wandb.login(key=WANDB_API_KEY)
wandb.init(project='llm2024-competition')

HF_TOKEN = "my-token"

from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    BitsAndBytesConfig,
    TrainingArguments,
    logging,
)
from peft import (
    LoraConfig,
    PeftModel,
    get_peft_model,
)
import os, torch, gc
from datasets import load_dataset
import bitsandbytes as bnb
from trl import SFTTrainer

SEED_VALUE = 42

base_model_id = "llm-jp/llm-jp-3-13b" 
new_model_id = "llm-jp-3-13b-finetune" #Fine-Tuningしたモデルにつけたい名前

bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4", # nf4は通常のINT4より精度が高く、ニューラルネットワークの分布に最適です
    bnb_4bit_compute_dtype=torch.bfloat16,
)


model = AutoModelForCausalLM.from_pretrained(
    base_model_id,
    quantization_config=bnb_config,
    device_map="cuda:0" #auto"
)

tokenizer = AutoTokenizer.from_pretrained(base_model_id, trust_remote_code=True)


def find_all_linear_names(model):
    cls = bnb.nn.Linear4bit # 4bit量子化線形層クラスを指定
    lora_module_names = set() # ここに取得した線形層を保持します。

    # モデル内の全てのモジュールを探索します
    for name, module in model.named_modules():
        if isinstance(module, cls): # モジュールが4bit量子化線形層の場合
            names = name.split('.') # モジュールの名前を分割 (ネストされてる際などに対処)
            lora_module_names.add(names[0] if len(names) == 1 else names[-1]) # 最下層の名前をlora_module_namesに追加

    # 'lm_head' は16ビット演算の際に除外する必要があるため、lora_module_namesから削除
    if 'lm_head' in lora_module_names:
        lora_module_names.remove('lm_head')

    return list(lora_module_names) # lora_module_namesをリストに変換して返します。

modules = find_all_linear_names(model)

peft_config = LoraConfig(
    r=32,   #16,
    lora_alpha=32,
    lora_dropout=0.05,
    bias="none",
    task_type="CAUSAL_LM",
    target_modules=modules,
)

model = get_peft_model(model, peft_config)


from datasets import concatenate_datasets, DatasetDict

# 全てのデータセットを読み込み
dataset0 = load_dataset("json", data_files="./Distribution20241221_all/ichikara-instruction-003-001-1.json")
dataset1 = load_dataset("json", data_files="./Distribution20241221_all/ichikara-instruction-003-001-1.json")
dataset2 = load_dataset("json", data_files="./Distribution20241221_all/ichikara-instruction-003-001-2.2.json")
dataset3 = load_dataset("json", data_files="./Distribution20241221_all/ichikara-instruction-003-001-5.2.json")
dataset4 = load_dataset("json", data_files="./Distribution20241221_all/ichikara-instruction-003-001-2.1.json")
dataset5 = load_dataset("json", data_files="./Distribution20241221_all/ichikara-instruction-003-001-5.1.json")
dataset6 = load_dataset("json", data_files="./Distribution20241221_all/ichikara-instruction-003-002-1.json")
dataset7 = load_dataset("json", data_files="./Distribution20241221_all/ichikara-instruction-003-003-1.json")

datasets_to_concatenate = [
    dataset0["train"], 
    dataset1["train"], 
    dataset2["train"],
    dataset3["train"],
    dataset4["train"],
    dataset5["train"],
    dataset6["train"],
    dataset7["train"]
    ]

concatenated_train_dataset = concatenate_datasets(datasets_to_concatenate)

dataset_all = DatasetDict({
    "train": concatenated_train_dataset
})

# 結合したデータを使用
dataset=dataset_all

# 学習時のプロンプトフォーマットの定義
prompt = """### 指示
{}
### 回答
{}"""


"""
formatting_prompts_func: 各データをプロンプトに合わせた形式に合わせる
"""
EOS_TOKEN = tokenizer.eos_token # トークナイザーのEOSトークン(文末トークン)
def formatting_prompts_func(examples):
    input = examples["text"] # 入力データ
    output = examples["output"] # 出力データ
    text = prompt.format(input, output) + EOS_TOKEN # プロンプトの作成
    return { "formatted_text" : text, } # 新しいフィールド "formatted_text" を返す
pass

# # 各データにフォーマットを適用
dataset = dataset.map(
    formatting_prompts_func,
    num_proc= 4, # 並列処理数を指定
)

# データをtrainデータとtestデータに分割 (test_sizeの比率に)
dataset = dataset["train"].train_test_split(test_size=0.1, seed=SEED_VALUE)


training_arguments = TrainingArguments(
    output_dir=new_model_id,
    per_device_train_batch_size=1,  #
    gradient_accumulation_steps=4,  # def: 2
    optim="paged_adamw_32bit",
    num_train_epochs=1,            # def: 1
    logging_strategy="steps",
    logging_steps=10,
    warmup_steps=10,
    save_steps=100,
    save_total_limit = 2,
    max_steps = -1,                 # def:-1
    learning_rate=2e-5,             # def:5e-5,
    fp16= False,
    bf16= False,
    seed = SEED_VALUE,
    group_by_length=True,
    report_to="wandb"
)

trainer = SFTTrainer(
    model=model,
    train_dataset=dataset["train"],
    peft_config=peft_config,
    max_seq_length= 512,
    dataset_text_field="formatted_text",
    tokenizer=tokenizer,
    args=training_arguments,
    packing= False,
)

model.config.use_cache = False # キャッシュ機能を無効化
trainer.train() # トレーニングを実行

from datetime import datetime

# 現在の日時を取得
now = datetime.now()

# フォーマットを指定して日時を文字列に変換
formatted_date = now.strftime("%Y%m%d_%H%M%S")  # 例: "20241214_153045"

print(formatted_date)

# タスクとなるデータの読み込み。
# omnicampusの開発環境では、左にタスクのjsonlをドラッグアンドドロップしてから実行。
import json
datasets = []
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
    item = ""
    for line in f:
      line = line.strip()
      item += line
      if item.endswith("}"):
        datasets.append(json.loads(item))
        item = ""


# モデルによるタスクの推論。
from tqdm import tqdm

results = []
for data in tqdm(datasets):

  input = data["input"]

  prompt = f"""### 指示
  {input}
  ### 回答
  """
    
  tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device)
  attention_mask = torch.ones_like(tokenized_input)

  with torch.no_grad():
      outputs = model.generate(
          tokenized_input,
          attention_mask=attention_mask,
          max_new_tokens=100,
          do_sample=False,
          repetition_penalty=1.2,
          pad_token_id=tokenizer.eos_token_id
      )[0]
  output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True)

  results.append({"task_id": data["task_id"], "input": input, "output": output})

# こちらで生成されたjsolを提出してください。
# 本コードではinputとeval_aspectも含んでいますが、なくても問題ありません。
# 必須なのはtask_idとoutputとなります。
import re
jsonl_id = re.sub(".*/", "", new_model_id)
with open(f"./{jsonl_id}-outputs-{formatted_date}.jsonl", 'w', encoding='utf-8') as f:
    for result in results:
        json.dump(result, f, ensure_ascii=False)  # ensure_ascii=False for handling non-ASCII characters
        f.write('\n')

# モデルとトークナイザーをHugging Faceにアップロード
model.push_to_hub(new_model_id, token=HF_TOKEN, private=True) # Online saving
tokenizer.push_to_hub(new_model_id, token=HF_TOKEN, private=True) # Online saving



```



---
library_name: transformers
---

# Model Card for Model ID

<!-- Provide a quick summary of what the model is/does. -->

## Model Details

### Model Description

<!-- Provide a longer summary of what this model is. -->

This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.

- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]

### Model Sources [optional]

<!-- Provide the basic links for the model. -->

- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]

## Uses

<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->

### Direct Use

<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->

[More Information Needed]

### Downstream Use [optional]

<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->

[More Information Needed]

### Out-of-Scope Use

<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->

[More Information Needed]

## Bias, Risks, and Limitations

<!-- This section is meant to convey both technical and sociotechnical limitations. -->

[More Information Needed]

### Recommendations

<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

## How to Get Started with the Model

Use the code below to get started with the model.

[More Information Needed]

## Training Details

### Training Data

<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->

[More Information Needed]

### Training Procedure

<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->

#### Preprocessing [optional]

[More Information Needed]


#### Training Hyperparameters

- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->

#### Speeds, Sizes, Times [optional]

<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->

[More Information Needed]

## Evaluation

<!-- This section describes the evaluation protocols and provides the results. -->

### Testing Data, Factors & Metrics

#### Testing Data

<!-- This should link to a Dataset Card if possible. -->

[More Information Needed]

#### Factors

<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->

[More Information Needed]

#### Metrics

<!-- These are the evaluation metrics being used, ideally with a description of why. -->

[More Information Needed]

### Results

[More Information Needed]

#### Summary



## Model Examination [optional]

<!-- Relevant interpretability work for the model goes here -->

[More Information Needed]

## Environmental Impact

<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->

Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).

- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]

## Technical Specifications [optional]

### Model Architecture and Objective

[More Information Needed]

### Compute Infrastructure

[More Information Needed]

#### Hardware

[More Information Needed]

#### Software

[More Information Needed]

## Citation [optional]

<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**

[More Information Needed]

**APA:**

[More Information Needed]

## Glossary [optional]

<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->

[More Information Needed]

## More Information [optional]

[More Information Needed]

## Model Card Authors [optional]

[More Information Needed]

## Model Card Contact

[More Information Needed]