akmalmasud96 commited on
Commit
486bf89
1 Parent(s): bc40e88

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +88 -0
README.md ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - fleurs
7
+ metrics:
8
+ - wer
9
+ model-index:
10
+ - name: xlsr-53-ur
11
+ results:
12
+ - task:
13
+ name: Automatic Speech Recognition
14
+ type: automatic-speech-recognition
15
+ dataset:
16
+ name: fleurs
17
+ type: fleurs
18
+ config: ur_pk
19
+ split: test
20
+ args: ur_pk
21
+ metrics:
22
+ - name: Wer
23
+ type: wer
24
+ value: 0.3450557529714496
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # xlsr-53-ur
31
+
32
+ This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the fleurs dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 0.6860
35
+ - Wer: 0.3451
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 0.0003
55
+ - train_batch_size: 6
56
+ - eval_batch_size: 6
57
+ - seed: 42
58
+ - distributed_type: multi-GPU
59
+ - num_devices: 2
60
+ - total_train_batch_size: 12
61
+ - total_eval_batch_size: 12
62
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
63
+ - lr_scheduler_type: linear
64
+ - lr_scheduler_warmup_steps: 500
65
+ - num_epochs: 15.0
66
+ - mixed_precision_training: Native AMP
67
+
68
+ ### Training results
69
+
70
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
71
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
72
+ | 3.0396 | 1.59 | 300 | 3.0179 | 1.0 |
73
+ | 0.4976 | 3.17 | 600 | 0.7037 | 0.5447 |
74
+ | 0.3062 | 4.76 | 900 | 0.5557 | 0.4036 |
75
+ | 0.2287 | 6.35 | 1200 | 0.5620 | 0.3935 |
76
+ | 0.2504 | 7.94 | 1500 | 0.5907 | 0.3677 |
77
+ | 0.0633 | 9.52 | 1800 | 0.6239 | 0.3773 |
78
+ | 0.0456 | 11.11 | 2100 | 0.6748 | 0.3604 |
79
+ | 0.0774 | 12.7 | 2400 | 0.6747 | 0.3552 |
80
+ | 0.058 | 14.29 | 2700 | 0.6860 | 0.3451 |
81
+
82
+
83
+ ### Framework versions
84
+
85
+ - Transformers 4.27.0.dev0
86
+ - Pytorch 1.13.1+cu116
87
+ - Datasets 2.9.0
88
+ - Tokenizers 0.13.2