--- license: apache-2.0 tags: - generated_from_trainer datasets: - fleurs metrics: - wer model-index: - name: xlsr-53-ur results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: fleurs type: fleurs config: ur_pk split: test args: ur_pk metrics: - name: Wer type: wer value: 0.3450557529714496 --- # xlsr-53-ur This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the fleurs dataset. It achieves the following results on the evaluation set: - Loss: 0.6860 - Wer: 0.3451 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 12 - total_eval_batch_size: 12 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 15.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.0396 | 1.59 | 300 | 3.0179 | 1.0 | | 0.4976 | 3.17 | 600 | 0.7037 | 0.5447 | | 0.3062 | 4.76 | 900 | 0.5557 | 0.4036 | | 0.2287 | 6.35 | 1200 | 0.5620 | 0.3935 | | 0.2504 | 7.94 | 1500 | 0.5907 | 0.3677 | | 0.0633 | 9.52 | 1800 | 0.6239 | 0.3773 | | 0.0456 | 11.11 | 2100 | 0.6748 | 0.3604 | | 0.0774 | 12.7 | 2400 | 0.6747 | 0.3552 | | 0.058 | 14.29 | 2700 | 0.6860 | 0.3451 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2