File size: 5,576 Bytes
852d65e
 
 
07bb7da
d34e107
 
 
 
852d65e
 
 
07bb7da
852d65e
d34e107
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
852d65e
 
 
d34e107
27a1f25
7d4d432
 
90a6525
 
98a6434
82f1825
90a6525
 
 
57ee1fa
90a6525
883a4c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90a6525
 
 
 
 
 
 
 
 
 
3768a95
 
 
 
2f1cbbb
02205bf
 
 
 
 
3768a95
90a6525
 
87af614
 
02205bf
82f1825
87af614
 
 
 
82f1825
87af614
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
---
language:
- en
- multilingual
- de
- it
- es
- fr
tags:
- instruction-tuning
- text-generation-inference
- text2text-generation
widget:
- text: Write an essay about meditation.
  example_title: Essay Generation
- text: Give me 5 steps to clean my room.
  example_title: How-to Instructions
- text: How are the continents formed?
  example_title: Question-Answering
- text: >-
    Prompt: A man draws a gun in a dark alley and asks for your wallet. You
    begrudgingly obey. He throws it on the ground, shoots it till it screeches,
    and turns to you; 'you are safe now'. Write a story about given prompt.
  example_title: Story Generation
- text: >-
    Write directions of a cooking recipe with these ingredients: chicken breast,
    carrots, green peas, celery, butter, onion, flour, salt, black pepper,
    celery seed, chicken broth, milk, unbaked pie crusts
  example_title: Recipe Generation
- text: Schreiben Sie einen Blogbeitrag über die Vorteile des Lesens von Büchern.
  example_title: German Essay Generation
inference:
  parameters:
    top_p: 0.9
    do_sample: true
    max_length: 75
datasets:
- akoksal/LongForm
---

## LongForm-T5-XL
The LongForm dataset is created by leveraging English corpus examples with reverse instructions. We select a diverse set of human-written documents from existing corpora such as C4 and Wikipedia and generate instructions for the given documents via LLMs. Then, we extend these examples with structured corpora examples such as Stack Exchange and WikiHow and task examples such as question answering, email writing, grammar error correction, story/poem generation, and text summarization.


Github Repo: https://github.com/akoksal/LongForm
![The LongForm dataset](https://github.com/akoksal/LongForm/blob/main/figures/intro_example.jpg?raw=true)

## How to Load
```python
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
model = AutoModelForSeq2SeqLM.from_pretrained("akoksal/LongForm-T5-XL")
tokenizer = AutoTokenizer.from_pretrained("akoksal/LongForm-T5-XL")

instruction = "Write an essay about meditation."
torch.manual_seed(42)
input_ids = tokenizer(instruction, return_tensors="pt").input_ids
target_ids = model.generate(input_ids, do_sample=True, max_new_tokens=50, top_p=0.9)
tokenizer.decode(target_ids[0], skip_special_tokens=True)
# Output:
# > Meditation is an ancient, spiritual practice. Meditation was first\
# practiced as early as 3000 BC by Indians. Meditation has been practiced\
# by people for thousands of years. People meditate in order to become more\
# present in their life. Meditation is
```

## Evaluation
We provide in-depth evaluation of LongForm models and baselines in the paper. We present the METEOR scores of models in out-of-domain datasets. In all tasks, Recipe Generation (RGen), long-form question answering (ELI5), short story generation (WritingPrompts/WP), LongForm models outperform prior instruction-tuned models.
|          | **All** | **Recipe Generation**             | **ELI5** | **Writing Prompts** |
|-----------------------|---------|-----------------------------------|----------|---------------------|
| **T0++**              | 10.9    | 18.7                              | 3.8      | 10.2                |
| **Tk-Instruct**       | 6.3     | 12.9* | 3.6      | 2.4                 |
| **Flan-T5**           | 10.6    | 20.9* | 3.5      | 7.4                 |
| **Alpaca-LLaMA-7B**   | 14.6    | 19.5                              | 12.5     | 11.8                |
| **OPT-30B**           | 11.1    | 18.6                              | 12.2     | 2.6                 |
| [**LongForm-T5-XL**](https://huggingface.co/akoksal/LongForm-T5-XL)    | 16.3    | 20.2                              | 18.3     | 10.6                |
| [**LongForm-OPT-2.7B**](https://huggingface.co/akoksal/LongForm-OPT-2.7B)   | 17.8    | 15.5                              | 17.9     | **19.9**                |
| [**LongForm-OPT-6.7B**](https://huggingface.co/akoksal/LongForm-OPT-6.7B) | 17.7    | 16.9                              | 17.2     | 19.0                |
| [**LongForm-LLaMA-7B**](https://huggingface.co/akoksal/LongForm-LLaMA-7B-diff)‡ | **19.7**    | **21.7**                              | **18.6**     | 18.9                |

Smaller versions of LongForm-OPT models are also available:
- [**LongForm-OPT-1.3B**](https://huggingface.co/akoksal/LongForm-OPT-1.3B)
- [**LongForm-OPT-350M**](https://huggingface.co/akoksal/LongForm-OPT-350M)
- [**LongForm-OPT-125M**](https://huggingface.co/akoksal/LongForm-OPT-125M)

‡: We can just release the difference between LongForm-LLaMA-7B and pretrained LLaMA-7B publicly due to restrictions of LLaMA models.

## Limitations
The LongForm dataset and models mainly focus on long text generation and have limitations regarding structured prediction tasks in NLP. Additionally, we observe that LongForm models may present hallucination problems similar to those found in LLMs.

## License
The LongForm project is subject to a MIT License with custom limitations for restrictions imposed by OpenAI (for the instruction generation part), as well as the license of language models (OPT, LLaMA, and T5). The WikiHow subset of LongForm-C is subject to the license proposed by WikiHow.

## Citation
```
@misc{koksal2023longform,
      title={LongForm: Effective Instruction Tuning with Reverse Instructions}, 
      author={Abdullatif Köksal and Timo Schick and Anna Korhonen and Hinrich Schütze},
      year={2023},
      eprint={2304.08460},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```