akot commited on
Commit
fc8c422
1 Parent(s): fd7154a

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,836 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: jinaai/jina-embeddings-v2-base-de
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ metrics:
7
+ - cosine_accuracy@1
8
+ - cosine_accuracy@3
9
+ - cosine_accuracy@5
10
+ - cosine_accuracy@10
11
+ - cosine_precision@1
12
+ - cosine_precision@3
13
+ - cosine_precision@5
14
+ - cosine_precision@10
15
+ - cosine_recall@1
16
+ - cosine_recall@3
17
+ - cosine_recall@5
18
+ - cosine_recall@10
19
+ - cosine_ndcg@10
20
+ - cosine_mrr@10
21
+ - cosine_map@100
22
+ pipeline_tag: sentence-similarity
23
+ tags:
24
+ - sentence-transformers
25
+ - sentence-similarity
26
+ - feature-extraction
27
+ - generated_from_trainer
28
+ - dataset_size:4957
29
+ - loss:MatryoshkaLoss
30
+ - loss:MultipleNegativesRankingLoss
31
+ widget:
32
+ - source_sentence: 312 Aus steuerlicher Sicht ist es möglich, mehrere Versorgungszusagen
33
+ nebeneinander, also neben einer Altzusage auch eine Neuzusage zu erteilen (z.
34
+ B. „alte“ Direktversicherung und „neuer“ Pensionsfonds).
35
+ sentences:
36
+ - Wann liegt bei der betrieblichen Altersversorgung eine schädliche Verwendung vor?
37
+ - Welche steuerliche Behandlung erfahren Auszahlungen aus Altersvorsorgeverträgen
38
+ nach § 22 Nr. 5 EStG?
39
+ - Können verschiedene Versorgungszusagen wie Direktversicherung und Pensionsfonds
40
+ gleichzeitig bestehen?
41
+ - source_sentence: 5 Pflichtversicherte nach dem Gesetz über die Alterssicherung der
42
+ Landwirte gehören, soweit sie nicht als Pflichtversicherte der gesetzlichen Rentenversicherung
43
+ ohnehin bereits anspruchsberechtigt sind, in dieser Eigenschaft ebenfalls zum
44
+ begünstigten Personenkreis. Darunter fallen insbesondere die in Anlage 1 Abschnitt
45
+ B aufgeführten Personen.
46
+ sentences:
47
+ - Wann wird das Anrecht der ausgleichsberechtigten Person bei intern geteilter Altersvorsorge
48
+ als abgeschlossen betrachtet?
49
+ - Welche Personen sind in der Anlage 1 Abschnitt B bezüglich der Alterssicherung
50
+ der Landwirte aufgeführt?
51
+ - In welchen Fällen führt die Möglichkeit einer Beitragserstattung nicht zur Versagung
52
+ der Anerkennung als betriebliche Altersversorgung?
53
+ - source_sentence: 233 Voraussetzung für die Förderung durch Sonderausgabenabzug nach
54
+ § 10a EStG und Zulage nach Abschnitt XI EStG ist in den Fällen der Rz. 231 f.,
55
+ dass der Steuerpflichtige zum begünstigten Personenkreis gehört. Die zeitliche
56
+ Zuordnung dieser Altersvorsorgebeiträge richtet sich grundsätzlich nach § 11 Abs.
57
+ 2 EStG.
58
+ sentences:
59
+ - Wer gehört zum begünstigten Personenkreis für die Altersvorsorgeförderung?
60
+ - Wie werden erstattete Kosten eines Altersvorsorgevertrags besteuert, wenn sie
61
+ dem Steuerpflichtigen ausgezahlt werden?
62
+ - Ist der Übertragungswert einer betrieblichen Altersversorgung bei einem Arbeitgeberwechsel
63
+ steuerfrei?
64
+ - source_sentence: 127 Die Entnahme des Teilkapitalbetrags von bis zu 30 % des zur
65
+ Verfügung stehenden Kapitals aus dem Vertrag hat zu Beginn der Auszahlungsphase
66
+ zu erfolgen. Eine Verteilung über mehrere Auszahlungszeitpunkte ist nicht möglich.
67
+ sentences:
68
+ - Kann ich den Teilkapitalbetrag aus meiner Altersvorsorge zu verschiedenen Zeitpunkten
69
+ entnehmen?
70
+ - Welche Einkunftsarten können Leistungen aus einer Versorgungszusage des Arbeitgebers
71
+ sein?
72
+ - Was ist im Todesfall des Zulageberechtigten bezüglich der Förderbeiträge zu tun?
73
+ - source_sentence: '67 Abwandlung des Beispiels 1 in Rn. 66: A erhält zudem zwei Kinderzulagen
74
+ für seine in den Jahren 2004 und 2005 geborenen Kinder. Beitragspflichtige Einnahmen
75
+ 53.000 € 4 % 2.120 € höchstens 2.100 € anzusetzen 2.100 € abzüglich Zulage 175
76
+ € Mindesteigenbeitrag (§ 86 Abs. 1 Satz 2 EStG) 1.925 € Sockelbetrag (§ 86 Abs.
77
+ 1 Satz 4 EStG) 60 € maßgebend (§ 86 Abs. 1 Satz 5 EStG) 1.925 € Die von A geleisteten
78
+ Beiträge übersteigen den Mindesteigenbeitrag. Die Zulage wird nicht gekürzt.'
79
+ sentences:
80
+ - Wird die Zulage für A gekürzt, wenn die Beiträge den Mindesteigenbeitrag übersteigen?
81
+ - Was versteht man unter Sonderzahlungen des Arbeitgebers?
82
+ - Wie erfolgt die Besteuerung bei der ausgleichsberechtigten Person nach einer externen
83
+ Teilung?
84
+ model-index:
85
+ - name: SentenceTransformer based on jinaai/jina-embeddings-v2-base-de
86
+ results:
87
+ - task:
88
+ type: information-retrieval
89
+ name: Information Retrieval
90
+ dataset:
91
+ name: dim 768
92
+ type: dim_768
93
+ metrics:
94
+ - type: cosine_accuracy@1
95
+ value: 0.019963702359346643
96
+ name: Cosine Accuracy@1
97
+ - type: cosine_accuracy@3
98
+ value: 0.22686025408348456
99
+ name: Cosine Accuracy@3
100
+ - type: cosine_accuracy@5
101
+ value: 0.3702359346642468
102
+ name: Cosine Accuracy@5
103
+ - type: cosine_accuracy@10
104
+ value: 0.6116152450090744
105
+ name: Cosine Accuracy@10
106
+ - type: cosine_precision@1
107
+ value: 0.019963702359346643
108
+ name: Cosine Precision@1
109
+ - type: cosine_precision@3
110
+ value: 0.07562008469449484
111
+ name: Cosine Precision@3
112
+ - type: cosine_precision@5
113
+ value: 0.07404718693284937
114
+ name: Cosine Precision@5
115
+ - type: cosine_precision@10
116
+ value: 0.061161524500907435
117
+ name: Cosine Precision@10
118
+ - type: cosine_recall@1
119
+ value: 0.019963702359346643
120
+ name: Cosine Recall@1
121
+ - type: cosine_recall@3
122
+ value: 0.22686025408348456
123
+ name: Cosine Recall@3
124
+ - type: cosine_recall@5
125
+ value: 0.3702359346642468
126
+ name: Cosine Recall@5
127
+ - type: cosine_recall@10
128
+ value: 0.6116152450090744
129
+ name: Cosine Recall@10
130
+ - type: cosine_ndcg@10
131
+ value: 0.2844236350864178
132
+ name: Cosine Ndcg@10
133
+ - type: cosine_mrr@10
134
+ value: 0.18406864863307704
135
+ name: Cosine Mrr@10
136
+ - type: cosine_map@100
137
+ value: 0.2005051297694407
138
+ name: Cosine Map@100
139
+ - task:
140
+ type: information-retrieval
141
+ name: Information Retrieval
142
+ dataset:
143
+ name: dim 512
144
+ type: dim_512
145
+ metrics:
146
+ - type: cosine_accuracy@1
147
+ value: 0.019963702359346643
148
+ name: Cosine Accuracy@1
149
+ - type: cosine_accuracy@3
150
+ value: 0.22141560798548093
151
+ name: Cosine Accuracy@3
152
+ - type: cosine_accuracy@5
153
+ value: 0.3647912885662432
154
+ name: Cosine Accuracy@5
155
+ - type: cosine_accuracy@10
156
+ value: 0.6061705989110708
157
+ name: Cosine Accuracy@10
158
+ - type: cosine_precision@1
159
+ value: 0.019963702359346643
160
+ name: Cosine Precision@1
161
+ - type: cosine_precision@3
162
+ value: 0.07380520266182698
163
+ name: Cosine Precision@3
164
+ - type: cosine_precision@5
165
+ value: 0.07295825771324864
166
+ name: Cosine Precision@5
167
+ - type: cosine_precision@10
168
+ value: 0.06061705989110708
169
+ name: Cosine Precision@10
170
+ - type: cosine_recall@1
171
+ value: 0.019963702359346643
172
+ name: Cosine Recall@1
173
+ - type: cosine_recall@3
174
+ value: 0.22141560798548093
175
+ name: Cosine Recall@3
176
+ - type: cosine_recall@5
177
+ value: 0.3647912885662432
178
+ name: Cosine Recall@5
179
+ - type: cosine_recall@10
180
+ value: 0.6061705989110708
181
+ name: Cosine Recall@10
182
+ - type: cosine_ndcg@10
183
+ value: 0.28083974598722433
184
+ name: Cosine Ndcg@10
185
+ - type: cosine_mrr@10
186
+ value: 0.18116843833722246
187
+ name: Cosine Mrr@10
188
+ - type: cosine_map@100
189
+ value: 0.19778401122661624
190
+ name: Cosine Map@100
191
+ - task:
192
+ type: information-retrieval
193
+ name: Information Retrieval
194
+ dataset:
195
+ name: dim 256
196
+ type: dim_256
197
+ metrics:
198
+ - type: cosine_accuracy@1
199
+ value: 0.019963702359346643
200
+ name: Cosine Accuracy@1
201
+ - type: cosine_accuracy@3
202
+ value: 0.2014519056261343
203
+ name: Cosine Accuracy@3
204
+ - type: cosine_accuracy@5
205
+ value: 0.35390199637023595
206
+ name: Cosine Accuracy@5
207
+ - type: cosine_accuracy@10
208
+ value: 0.5970961887477314
209
+ name: Cosine Accuracy@10
210
+ - type: cosine_precision@1
211
+ value: 0.019963702359346643
212
+ name: Cosine Precision@1
213
+ - type: cosine_precision@3
214
+ value: 0.06715063520871144
215
+ name: Cosine Precision@3
216
+ - type: cosine_precision@5
217
+ value: 0.07078039927404718
218
+ name: Cosine Precision@5
219
+ - type: cosine_precision@10
220
+ value: 0.059709618874773135
221
+ name: Cosine Precision@10
222
+ - type: cosine_recall@1
223
+ value: 0.019963702359346643
224
+ name: Cosine Recall@1
225
+ - type: cosine_recall@3
226
+ value: 0.2014519056261343
227
+ name: Cosine Recall@3
228
+ - type: cosine_recall@5
229
+ value: 0.35390199637023595
230
+ name: Cosine Recall@5
231
+ - type: cosine_recall@10
232
+ value: 0.5970961887477314
233
+ name: Cosine Recall@10
234
+ - type: cosine_ndcg@10
235
+ value: 0.2731400809424903
236
+ name: Cosine Ndcg@10
237
+ - type: cosine_mrr@10
238
+ value: 0.17433310287212284
239
+ name: Cosine Mrr@10
240
+ - type: cosine_map@100
241
+ value: 0.19079503725126565
242
+ name: Cosine Map@100
243
+ - task:
244
+ type: information-retrieval
245
+ name: Information Retrieval
246
+ dataset:
247
+ name: dim 128
248
+ type: dim_128
249
+ metrics:
250
+ - type: cosine_accuracy@1
251
+ value: 0.029038112522686024
252
+ name: Cosine Accuracy@1
253
+ - type: cosine_accuracy@3
254
+ value: 0.20689655172413793
255
+ name: Cosine Accuracy@3
256
+ - type: cosine_accuracy@5
257
+ value: 0.3484573502722323
258
+ name: Cosine Accuracy@5
259
+ - type: cosine_accuracy@10
260
+ value: 0.588021778584392
261
+ name: Cosine Accuracy@10
262
+ - type: cosine_precision@1
263
+ value: 0.029038112522686024
264
+ name: Cosine Precision@1
265
+ - type: cosine_precision@3
266
+ value: 0.06896551724137931
267
+ name: Cosine Precision@3
268
+ - type: cosine_precision@5
269
+ value: 0.06969147005444647
270
+ name: Cosine Precision@5
271
+ - type: cosine_precision@10
272
+ value: 0.0588021778584392
273
+ name: Cosine Precision@10
274
+ - type: cosine_recall@1
275
+ value: 0.029038112522686024
276
+ name: Cosine Recall@1
277
+ - type: cosine_recall@3
278
+ value: 0.20689655172413793
279
+ name: Cosine Recall@3
280
+ - type: cosine_recall@5
281
+ value: 0.3484573502722323
282
+ name: Cosine Recall@5
283
+ - type: cosine_recall@10
284
+ value: 0.588021778584392
285
+ name: Cosine Recall@10
286
+ - type: cosine_ndcg@10
287
+ value: 0.273961459483562
288
+ name: Cosine Ndcg@10
289
+ - type: cosine_mrr@10
290
+ value: 0.17827615014547865
291
+ name: Cosine Mrr@10
292
+ - type: cosine_map@100
293
+ value: 0.19440303132346026
294
+ name: Cosine Map@100
295
+ - task:
296
+ type: information-retrieval
297
+ name: Information Retrieval
298
+ dataset:
299
+ name: dim 64
300
+ type: dim_64
301
+ metrics:
302
+ - type: cosine_accuracy@1
303
+ value: 0.009074410163339383
304
+ name: Cosine Accuracy@1
305
+ - type: cosine_accuracy@3
306
+ value: 0.18148820326678766
307
+ name: Cosine Accuracy@3
308
+ - type: cosine_accuracy@5
309
+ value: 0.3339382940108893
310
+ name: Cosine Accuracy@5
311
+ - type: cosine_accuracy@10
312
+ value: 0.5662431941923775
313
+ name: Cosine Accuracy@10
314
+ - type: cosine_precision@1
315
+ value: 0.009074410163339383
316
+ name: Cosine Precision@1
317
+ - type: cosine_precision@3
318
+ value: 0.06049606775559588
319
+ name: Cosine Precision@3
320
+ - type: cosine_precision@5
321
+ value: 0.06678765880217785
322
+ name: Cosine Precision@5
323
+ - type: cosine_precision@10
324
+ value: 0.05662431941923775
325
+ name: Cosine Precision@10
326
+ - type: cosine_recall@1
327
+ value: 0.009074410163339383
328
+ name: Cosine Recall@1
329
+ - type: cosine_recall@3
330
+ value: 0.18148820326678766
331
+ name: Cosine Recall@3
332
+ - type: cosine_recall@5
333
+ value: 0.3339382940108893
334
+ name: Cosine Recall@5
335
+ - type: cosine_recall@10
336
+ value: 0.5662431941923775
337
+ name: Cosine Recall@10
338
+ - type: cosine_ndcg@10
339
+ value: 0.2525851472012039
340
+ name: Cosine Ndcg@10
341
+ - type: cosine_mrr@10
342
+ value: 0.1567424307896179
343
+ name: Cosine Mrr@10
344
+ - type: cosine_map@100
345
+ value: 0.17193947007915014
346
+ name: Cosine Map@100
347
+ ---
348
+
349
+ # SentenceTransformer based on jinaai/jina-embeddings-v2-base-de
350
+
351
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [jinaai/jina-embeddings-v2-base-de](https://huggingface.co/jinaai/jina-embeddings-v2-base-de). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
352
+
353
+ ## Model Details
354
+
355
+ ### Model Description
356
+ - **Model Type:** Sentence Transformer
357
+ - **Base model:** [jinaai/jina-embeddings-v2-base-de](https://huggingface.co/jinaai/jina-embeddings-v2-base-de) <!-- at revision 13b8b30bd0bbee829ceffb82b282cc714cef836e -->
358
+ - **Maximum Sequence Length:** 1024 tokens
359
+ - **Output Dimensionality:** 768 tokens
360
+ - **Similarity Function:** Cosine Similarity
361
+ <!-- - **Training Dataset:** Unknown -->
362
+ <!-- - **Language:** Unknown -->
363
+ <!-- - **License:** Unknown -->
364
+
365
+ ### Model Sources
366
+
367
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
368
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
369
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
370
+
371
+ ### Full Model Architecture
372
+
373
+ ```
374
+ SentenceTransformer(
375
+ (0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: JinaBertModel
376
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
377
+ (2): Normalize()
378
+ )
379
+ ```
380
+
381
+ ## Usage
382
+
383
+ ### Direct Usage (Sentence Transformers)
384
+
385
+ First install the Sentence Transformers library:
386
+
387
+ ```bash
388
+ pip install -U sentence-transformers
389
+ ```
390
+
391
+ Then you can load this model and run inference.
392
+ ```python
393
+ from sentence_transformers import SentenceTransformer
394
+
395
+ # Download from the 🤗 Hub
396
+ model = SentenceTransformer("akot/jina-semantic-bmf-matryoshka")
397
+ # Run inference
398
+ sentences = [
399
+ '67 Abwandlung des Beispiels 1 in Rn. 66: A erhält zudem zwei Kinderzulagen für seine in den Jahren 2004 und 2005 geborenen Kinder. Beitragspflichtige Einnahmen 53.000 € 4 % 2.120 € höchstens 2.100 € anzusetzen 2.100 € abzüglich Zulage 175 € Mindesteigenbeitrag (§ 86 Abs. 1 Satz 2 EStG) 1.925 € Sockelbetrag (§ 86 Abs. 1 Satz 4 EStG) 60 € maßgebend (§ 86 Abs. 1 Satz 5 EStG) 1.925 € Die von A geleisteten Beiträge übersteigen den Mindesteigenbeitrag. Die Zulage wird nicht gekürzt.',
400
+ 'Wird die Zulage für A gekürzt, wenn die Beiträge den Mindesteigenbeitrag übersteigen?',
401
+ 'Wie erfolgt die Besteuerung bei der ausgleichsberechtigten Person nach einer externen Teilung?',
402
+ ]
403
+ embeddings = model.encode(sentences)
404
+ print(embeddings.shape)
405
+ # [3, 768]
406
+
407
+ # Get the similarity scores for the embeddings
408
+ similarities = model.similarity(embeddings, embeddings)
409
+ print(similarities.shape)
410
+ # [3, 3]
411
+ ```
412
+
413
+ <!--
414
+ ### Direct Usage (Transformers)
415
+
416
+ <details><summary>Click to see the direct usage in Transformers</summary>
417
+
418
+ </details>
419
+ -->
420
+
421
+ <!--
422
+ ### Downstream Usage (Sentence Transformers)
423
+
424
+ You can finetune this model on your own dataset.
425
+
426
+ <details><summary>Click to expand</summary>
427
+
428
+ </details>
429
+ -->
430
+
431
+ <!--
432
+ ### Out-of-Scope Use
433
+
434
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
435
+ -->
436
+
437
+ ## Evaluation
438
+
439
+ ### Metrics
440
+
441
+ #### Information Retrieval
442
+ * Dataset: `dim_768`
443
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
444
+
445
+ | Metric | Value |
446
+ |:--------------------|:-----------|
447
+ | cosine_accuracy@1 | 0.02 |
448
+ | cosine_accuracy@3 | 0.2269 |
449
+ | cosine_accuracy@5 | 0.3702 |
450
+ | cosine_accuracy@10 | 0.6116 |
451
+ | cosine_precision@1 | 0.02 |
452
+ | cosine_precision@3 | 0.0756 |
453
+ | cosine_precision@5 | 0.074 |
454
+ | cosine_precision@10 | 0.0612 |
455
+ | cosine_recall@1 | 0.02 |
456
+ | cosine_recall@3 | 0.2269 |
457
+ | cosine_recall@5 | 0.3702 |
458
+ | cosine_recall@10 | 0.6116 |
459
+ | cosine_ndcg@10 | 0.2844 |
460
+ | cosine_mrr@10 | 0.1841 |
461
+ | **cosine_map@100** | **0.2005** |
462
+
463
+ #### Information Retrieval
464
+ * Dataset: `dim_512`
465
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
466
+
467
+ | Metric | Value |
468
+ |:--------------------|:-----------|
469
+ | cosine_accuracy@1 | 0.02 |
470
+ | cosine_accuracy@3 | 0.2214 |
471
+ | cosine_accuracy@5 | 0.3648 |
472
+ | cosine_accuracy@10 | 0.6062 |
473
+ | cosine_precision@1 | 0.02 |
474
+ | cosine_precision@3 | 0.0738 |
475
+ | cosine_precision@5 | 0.073 |
476
+ | cosine_precision@10 | 0.0606 |
477
+ | cosine_recall@1 | 0.02 |
478
+ | cosine_recall@3 | 0.2214 |
479
+ | cosine_recall@5 | 0.3648 |
480
+ | cosine_recall@10 | 0.6062 |
481
+ | cosine_ndcg@10 | 0.2808 |
482
+ | cosine_mrr@10 | 0.1812 |
483
+ | **cosine_map@100** | **0.1978** |
484
+
485
+ #### Information Retrieval
486
+ * Dataset: `dim_256`
487
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
488
+
489
+ | Metric | Value |
490
+ |:--------------------|:-----------|
491
+ | cosine_accuracy@1 | 0.02 |
492
+ | cosine_accuracy@3 | 0.2015 |
493
+ | cosine_accuracy@5 | 0.3539 |
494
+ | cosine_accuracy@10 | 0.5971 |
495
+ | cosine_precision@1 | 0.02 |
496
+ | cosine_precision@3 | 0.0672 |
497
+ | cosine_precision@5 | 0.0708 |
498
+ | cosine_precision@10 | 0.0597 |
499
+ | cosine_recall@1 | 0.02 |
500
+ | cosine_recall@3 | 0.2015 |
501
+ | cosine_recall@5 | 0.3539 |
502
+ | cosine_recall@10 | 0.5971 |
503
+ | cosine_ndcg@10 | 0.2731 |
504
+ | cosine_mrr@10 | 0.1743 |
505
+ | **cosine_map@100** | **0.1908** |
506
+
507
+ #### Information Retrieval
508
+ * Dataset: `dim_128`
509
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
510
+
511
+ | Metric | Value |
512
+ |:--------------------|:-----------|
513
+ | cosine_accuracy@1 | 0.029 |
514
+ | cosine_accuracy@3 | 0.2069 |
515
+ | cosine_accuracy@5 | 0.3485 |
516
+ | cosine_accuracy@10 | 0.588 |
517
+ | cosine_precision@1 | 0.029 |
518
+ | cosine_precision@3 | 0.069 |
519
+ | cosine_precision@5 | 0.0697 |
520
+ | cosine_precision@10 | 0.0588 |
521
+ | cosine_recall@1 | 0.029 |
522
+ | cosine_recall@3 | 0.2069 |
523
+ | cosine_recall@5 | 0.3485 |
524
+ | cosine_recall@10 | 0.588 |
525
+ | cosine_ndcg@10 | 0.274 |
526
+ | cosine_mrr@10 | 0.1783 |
527
+ | **cosine_map@100** | **0.1944** |
528
+
529
+ #### Information Retrieval
530
+ * Dataset: `dim_64`
531
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
532
+
533
+ | Metric | Value |
534
+ |:--------------------|:-----------|
535
+ | cosine_accuracy@1 | 0.0091 |
536
+ | cosine_accuracy@3 | 0.1815 |
537
+ | cosine_accuracy@5 | 0.3339 |
538
+ | cosine_accuracy@10 | 0.5662 |
539
+ | cosine_precision@1 | 0.0091 |
540
+ | cosine_precision@3 | 0.0605 |
541
+ | cosine_precision@5 | 0.0668 |
542
+ | cosine_precision@10 | 0.0566 |
543
+ | cosine_recall@1 | 0.0091 |
544
+ | cosine_recall@3 | 0.1815 |
545
+ | cosine_recall@5 | 0.3339 |
546
+ | cosine_recall@10 | 0.5662 |
547
+ | cosine_ndcg@10 | 0.2526 |
548
+ | cosine_mrr@10 | 0.1567 |
549
+ | **cosine_map@100** | **0.1719** |
550
+
551
+ <!--
552
+ ## Bias, Risks and Limitations
553
+
554
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
555
+ -->
556
+
557
+ <!--
558
+ ### Recommendations
559
+
560
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
561
+ -->
562
+
563
+ ## Training Details
564
+
565
+ ### Training Dataset
566
+
567
+ #### Unnamed Dataset
568
+
569
+
570
+ * Size: 4,957 training samples
571
+ * Columns: <code>positive</code> and <code>anchor</code>
572
+ * Approximate statistics based on the first 1000 samples:
573
+ | | positive | anchor |
574
+ |:--------|:-------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
575
+ | type | string | string |
576
+ | details | <ul><li>min: 5 tokens</li><li>mean: 145.09 tokens</li><li>max: 1024 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 19.57 tokens</li><li>max: 41 tokens</li></ul> |
577
+ * Samples:
578
+ | positive | anchor |
579
+ |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
580
+ | <code>134 Eine Rückzahlungsverpflichtung besteht nicht für den Teil der Zulagen, der auf nach § 1 Abs. 1 Nr. 2 AltZertG angespartes gefördertes Altersvorsorgevermögen entfällt, wenn es in Form einer Hinterbliebenenrente an die dort genannten Hinterbliebenen ausgezahlt wird. Dies gilt auch für den entsprechenden Teil der Steuerermäßigung.</code> | <code>Muss man Zulagen zurückzahlen, wenn das Altersvorsorgevermögen als Hinterbliebenenrente ausgezahlt wird?</code> |
581
+ | <code>140 Beendet der Zulageberechtigte vor der vollständigen Rückzahlung des AltersvorsorgeEigenheimbetrags die Nutzung zu eigenen Wohnzwecken, wird er so behandelt, als habe er den noch nicht zurückgezahlten Betrag schädlich verwendet. Die auf den noch ausstehenden Rückzahlungsbetrag entfallenden Zulagen sowie die nach § 10a Abs. 4 EStG gesondert festgestellten Steuerermäßigungen sind zurückzuzahlen (§ 92a Abs. 3 EStG). Die im noch ausstehenden Rückzahlungsbetrag enthaltenen Zuwächse (z.B. Zinserträge und Kursgewinne) Seite 41 sind als sonstige Einkünfte zu versteuern (§ 22 Nr. 5 Satz 5 Halbsatz 1 EStG). Außerdem hat der Zulageberechtigte den Vorteil zu versteuern, der sich aus der zinslosen Nutzung des noch nicht zurückgezahlten Betrags ergibt. Zugrunde gelegt wird hierbei eine Verzinsung von 5 % (Zins und Zinseszins) für jedes volle Kalenderjahr der Nutzung (§ 22 Nr. 5 Satz 5 Halbsatz 2 EStG). Diese Folgen treten nicht ein, wenn er den noch nicht zurückgezahlten Betrag in ein Folgeobjekt investiert (§ 92a Abs. 4 Satz 3 Nr. 1 EStG) oder zugunsten eines auf seinen Namen lautenden zertifizierten Altersvorsorgevertrags einzahlt (§ 92a Abs. 4 Satz 3 Nr. 2 EStG).</code> | <code>Was geschieht steuerlich, wenn der AltersvorsorgeEigenheimbetrag nicht vollständig zurückgezahlt wird und die Immobilie nicht mehr selbst genutzt wird?</code> |
582
+ | <code>144 Die als Einkünfte nach § 22 Nr. 5 Satz 3 EStG i.V.m. § 22 Nr. 5 Satz 2 EStG zu besteuernden Beträge muss der Anbieter gem. § 94 Abs. 1 Satz 4 EStG dem Zulageberechtigten bescheinigen und im Wege des Rentenbezugsmitteilungsverfahrens (§ 22a EStG) mitteilen. Ergeben sich insoweit steuerpflichtige Einkünfte nach § 22 Nr. 5 Satz 3 EStG für einen anderen Leistungsempfänger (z. B. Erben), ist für diesen eine entsprechende Rentenbezugsmitteilung der ZfA zu übermitteln.</code> | <code>Was muss im Falle eines anderen Leistungsempfängers, wie Erben, hinsichtlich der Rentenbezugsmitteilung getan werden?</code> |
583
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
584
+ ```json
585
+ {
586
+ "loss": "MultipleNegativesRankingLoss",
587
+ "matryoshka_dims": [
588
+ 768,
589
+ 512,
590
+ 256,
591
+ 128,
592
+ 64
593
+ ],
594
+ "matryoshka_weights": [
595
+ 1,
596
+ 1,
597
+ 1,
598
+ 1,
599
+ 1
600
+ ],
601
+ "n_dims_per_step": -1
602
+ }
603
+ ```
604
+
605
+ ### Training Hyperparameters
606
+ #### Non-Default Hyperparameters
607
+
608
+ - `eval_strategy`: epoch
609
+ - `per_device_train_batch_size`: 16
610
+ - `per_device_eval_batch_size`: 16
611
+ - `gradient_accumulation_steps`: 16
612
+ - `learning_rate`: 2e-05
613
+ - `num_train_epochs`: 10
614
+ - `lr_scheduler_type`: cosine
615
+ - `warmup_ratio`: 0.1
616
+ - `bf16`: True
617
+ - `tf32`: True
618
+ - `load_best_model_at_end`: True
619
+ - `optim`: adamw_torch_fused
620
+ - `batch_sampler`: no_duplicates
621
+
622
+ #### All Hyperparameters
623
+ <details><summary>Click to expand</summary>
624
+
625
+ - `overwrite_output_dir`: False
626
+ - `do_predict`: False
627
+ - `eval_strategy`: epoch
628
+ - `prediction_loss_only`: True
629
+ - `per_device_train_batch_size`: 16
630
+ - `per_device_eval_batch_size`: 16
631
+ - `per_gpu_train_batch_size`: None
632
+ - `per_gpu_eval_batch_size`: None
633
+ - `gradient_accumulation_steps`: 16
634
+ - `eval_accumulation_steps`: None
635
+ - `learning_rate`: 2e-05
636
+ - `weight_decay`: 0.0
637
+ - `adam_beta1`: 0.9
638
+ - `adam_beta2`: 0.999
639
+ - `adam_epsilon`: 1e-08
640
+ - `max_grad_norm`: 1.0
641
+ - `num_train_epochs`: 10
642
+ - `max_steps`: -1
643
+ - `lr_scheduler_type`: cosine
644
+ - `lr_scheduler_kwargs`: {}
645
+ - `warmup_ratio`: 0.1
646
+ - `warmup_steps`: 0
647
+ - `log_level`: passive
648
+ - `log_level_replica`: warning
649
+ - `log_on_each_node`: True
650
+ - `logging_nan_inf_filter`: True
651
+ - `save_safetensors`: True
652
+ - `save_on_each_node`: False
653
+ - `save_only_model`: False
654
+ - `restore_callback_states_from_checkpoint`: False
655
+ - `no_cuda`: False
656
+ - `use_cpu`: False
657
+ - `use_mps_device`: False
658
+ - `seed`: 42
659
+ - `data_seed`: None
660
+ - `jit_mode_eval`: False
661
+ - `use_ipex`: False
662
+ - `bf16`: True
663
+ - `fp16`: False
664
+ - `fp16_opt_level`: O1
665
+ - `half_precision_backend`: auto
666
+ - `bf16_full_eval`: False
667
+ - `fp16_full_eval`: False
668
+ - `tf32`: True
669
+ - `local_rank`: 0
670
+ - `ddp_backend`: None
671
+ - `tpu_num_cores`: None
672
+ - `tpu_metrics_debug`: False
673
+ - `debug`: []
674
+ - `dataloader_drop_last`: False
675
+ - `dataloader_num_workers`: 0
676
+ - `dataloader_prefetch_factor`: None
677
+ - `past_index`: -1
678
+ - `disable_tqdm`: False
679
+ - `remove_unused_columns`: True
680
+ - `label_names`: None
681
+ - `load_best_model_at_end`: True
682
+ - `ignore_data_skip`: False
683
+ - `fsdp`: []
684
+ - `fsdp_min_num_params`: 0
685
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
686
+ - `fsdp_transformer_layer_cls_to_wrap`: None
687
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
688
+ - `deepspeed`: None
689
+ - `label_smoothing_factor`: 0.0
690
+ - `optim`: adamw_torch_fused
691
+ - `optim_args`: None
692
+ - `adafactor`: False
693
+ - `group_by_length`: False
694
+ - `length_column_name`: length
695
+ - `ddp_find_unused_parameters`: None
696
+ - `ddp_bucket_cap_mb`: None
697
+ - `ddp_broadcast_buffers`: False
698
+ - `dataloader_pin_memory`: True
699
+ - `dataloader_persistent_workers`: False
700
+ - `skip_memory_metrics`: True
701
+ - `use_legacy_prediction_loop`: False
702
+ - `push_to_hub`: False
703
+ - `resume_from_checkpoint`: None
704
+ - `hub_model_id`: None
705
+ - `hub_strategy`: every_save
706
+ - `hub_private_repo`: False
707
+ - `hub_always_push`: False
708
+ - `gradient_checkpointing`: False
709
+ - `gradient_checkpointing_kwargs`: None
710
+ - `include_inputs_for_metrics`: False
711
+ - `eval_do_concat_batches`: True
712
+ - `fp16_backend`: auto
713
+ - `push_to_hub_model_id`: None
714
+ - `push_to_hub_organization`: None
715
+ - `mp_parameters`:
716
+ - `auto_find_batch_size`: False
717
+ - `full_determinism`: False
718
+ - `torchdynamo`: None
719
+ - `ray_scope`: last
720
+ - `ddp_timeout`: 1800
721
+ - `torch_compile`: False
722
+ - `torch_compile_backend`: None
723
+ - `torch_compile_mode`: None
724
+ - `dispatch_batches`: None
725
+ - `split_batches`: None
726
+ - `include_tokens_per_second`: False
727
+ - `include_num_input_tokens_seen`: False
728
+ - `neftune_noise_alpha`: None
729
+ - `optim_target_modules`: None
730
+ - `batch_eval_metrics`: False
731
+ - `batch_sampler`: no_duplicates
732
+ - `multi_dataset_batch_sampler`: proportional
733
+
734
+ </details>
735
+
736
+ ### Training Logs
737
+ | Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
738
+ |:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
739
+ | 0.5161 | 10 | 2.8284 | - | - | - | - | - |
740
+ | 0.9806 | 19 | - | 0.1775 | 0.1840 | 0.1873 | 0.1571 | 0.1916 |
741
+ | 1.0323 | 20 | 2.1 | - | - | - | - | - |
742
+ | 1.5484 | 30 | 1.3699 | - | - | - | - | - |
743
+ | 1.9613 | 38 | - | 0.1950 | 0.1904 | 0.1899 | 0.1732 | 0.1919 |
744
+ | 2.0645 | 40 | 1.0988 | - | - | - | - | - |
745
+ | 2.5806 | 50 | 0.8621 | - | - | - | - | - |
746
+ | 2.9935 | 58 | - | 0.1935 | 0.1893 | 0.1912 | 0.1701 | 0.1919 |
747
+ | 3.0968 | 60 | 0.7657 | - | - | - | - | - |
748
+ | 3.6129 | 70 | 0.61 | - | - | - | - | - |
749
+ | 3.9742 | 77 | - | 0.1856 | 0.1936 | 0.1931 | 0.1803 | 0.1986 |
750
+ | 4.1290 | 80 | 0.5908 | - | - | - | - | - |
751
+ | 4.6452 | 90 | 0.5263 | - | - | - | - | - |
752
+ | **4.9548** | **96** | **-** | **0.1981** | **0.2** | **0.2043** | **0.188** | **0.2188** |
753
+ | 5.1613 | 100 | 0.4526 | - | - | - | - | - |
754
+ | 5.6774 | 110 | 0.4439 | - | - | - | - | - |
755
+ | 5.9871 | 116 | - | 0.1952 | 0.1961 | 0.2006 | 0.1855 | 0.2015 |
756
+ | 6.1935 | 120 | 0.3765 | - | - | - | - | - |
757
+ | 6.7097 | 130 | 0.3824 | - | - | - | - | - |
758
+ | 6.9677 | 135 | - | 0.1921 | 0.1922 | 0.1992 | 0.1885 | 0.2036 |
759
+ | 7.2258 | 140 | 0.3594 | - | - | - | - | - |
760
+ | 7.7419 | 150 | 0.38 | - | - | - | - | - |
761
+ | 8.0 | 155 | - | 0.1994 | 0.1999 | 0.2068 | 0.1830 | 0.2145 |
762
+ | 8.2581 | 160 | 0.3487 | - | - | - | - | - |
763
+ | 8.7742 | 170 | 0.3343 | - | - | - | - | - |
764
+ | 8.9806 | 174 | - | 0.1939 | 0.2003 | 0.2031 | 0.1791 | 0.2091 |
765
+ | 9.2903 | 180 | 0.3425 | - | - | - | - | - |
766
+ | 9.8065 | 190 | 0.3459 | 0.1944 | 0.1908 | 0.1978 | 0.1719 | 0.2005 |
767
+
768
+ * The bold row denotes the saved checkpoint.
769
+
770
+ ### Framework Versions
771
+ - Python: 3.11.4
772
+ - Sentence Transformers: 3.0.1
773
+ - Transformers: 4.41.2
774
+ - PyTorch: 2.1.2+cu121
775
+ - Accelerate: 0.33.0
776
+ - Datasets: 2.19.1
777
+ - Tokenizers: 0.19.1
778
+
779
+ ## Citation
780
+
781
+ ### BibTeX
782
+
783
+ #### Sentence Transformers
784
+ ```bibtex
785
+ @inproceedings{reimers-2019-sentence-bert,
786
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
787
+ author = "Reimers, Nils and Gurevych, Iryna",
788
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
789
+ month = "11",
790
+ year = "2019",
791
+ publisher = "Association for Computational Linguistics",
792
+ url = "https://arxiv.org/abs/1908.10084",
793
+ }
794
+ ```
795
+
796
+ #### MatryoshkaLoss
797
+ ```bibtex
798
+ @misc{kusupati2024matryoshka,
799
+ title={Matryoshka Representation Learning},
800
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
801
+ year={2024},
802
+ eprint={2205.13147},
803
+ archivePrefix={arXiv},
804
+ primaryClass={cs.LG}
805
+ }
806
+ ```
807
+
808
+ #### MultipleNegativesRankingLoss
809
+ ```bibtex
810
+ @misc{henderson2017efficient,
811
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
812
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
813
+ year={2017},
814
+ eprint={1705.00652},
815
+ archivePrefix={arXiv},
816
+ primaryClass={cs.CL}
817
+ }
818
+ ```
819
+
820
+ <!--
821
+ ## Glossary
822
+
823
+ *Clearly define terms in order to be accessible across audiences.*
824
+ -->
825
+
826
+ <!--
827
+ ## Model Card Authors
828
+
829
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
830
+ -->
831
+
832
+ <!--
833
+ ## Model Card Contact
834
+
835
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
836
+ -->
config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "jinaai/jina-embeddings-v2-base-de",
3
+ "architectures": [
4
+ "JinaBertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "attn_implementation": null,
8
+ "auto_map": {
9
+ "AutoConfig": "jinaai/jina-bert-implementation--configuration_bert.JinaBertConfig",
10
+ "AutoModel": "jinaai/jina-bert-implementation--modeling_bert.JinaBertModel",
11
+ "AutoModelForMaskedLM": "jinaai/jina-bert-implementation--modeling_bert.JinaBertForMaskedLM",
12
+ "AutoModelForSequenceClassification": "jinaai/jina-bert-implementation--modeling_bert.JinaBertForSequenceClassification"
13
+ },
14
+ "classifier_dropout": null,
15
+ "emb_pooler": "mean",
16
+ "feed_forward_type": "geglu",
17
+ "gradient_checkpointing": false,
18
+ "hidden_act": "gelu",
19
+ "hidden_dropout_prob": 0.1,
20
+ "hidden_size": 768,
21
+ "initializer_range": 0.02,
22
+ "intermediate_size": 3072,
23
+ "layer_norm_eps": 1e-12,
24
+ "max_position_embeddings": 8192,
25
+ "model_max_length": 8192,
26
+ "model_type": "bert",
27
+ "num_attention_heads": 12,
28
+ "num_hidden_layers": 12,
29
+ "pad_token_id": 0,
30
+ "position_embedding_type": "alibi",
31
+ "torch_dtype": "float32",
32
+ "transformers_version": "4.41.2",
33
+ "type_vocab_size": 2,
34
+ "use_cache": true,
35
+ "vocab_size": 61056
36
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.1.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9759e716e5fa065381600f0d59da97f5a9d2a24db43195bd4539606afd5c6d3b
3
+ size 643276000
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 1024,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": true,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<pad>",
14
+ "lstrip": false,
15
+ "normalized": true,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "4": {
37
+ "content": "<mask>",
38
+ "lstrip": true,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ }
44
+ },
45
+ "bos_token": "<s>",
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "<s>",
48
+ "eos_token": "</s>",
49
+ "errors": "replace",
50
+ "mask_token": "<mask>",
51
+ "model_max_length": 8192,
52
+ "pad_token": "<pad>",
53
+ "sep_token": "</s>",
54
+ "tokenizer_class": "RobertaTokenizer",
55
+ "trim_offsets": true,
56
+ "unk_token": "<unk>"
57
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff