akridge commited on
Commit
a9faf1e
1 Parent(s): c4927ea

Upload 32 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ yolo11n-seg.gif filter=lfs diff=lfs merge=lfs -text
train/BoxF1_curve.png ADDED
train/BoxPR_curve.png ADDED
train/BoxP_curve.png ADDED
train/BoxR_curve.png ADDED
train/MaskF1_curve.png ADDED
train/MaskPR_curve.png ADDED
train/MaskP_curve.png ADDED
train/MaskR_curve.png ADDED
train/args.yaml ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: segment
2
+ mode: train
3
+ model: yolo11n-seg.pt
4
+ data: /content/fish_seg_dataset.yaml
5
+ epochs: 50
6
+ time: null
7
+ patience: 100
8
+ batch: 16
9
+ imgsz: 416
10
+ save: true
11
+ save_period: -1
12
+ cache: false
13
+ device: null
14
+ workers: 8
15
+ project: null
16
+ name: train
17
+ exist_ok: false
18
+ pretrained: true
19
+ optimizer: auto
20
+ verbose: true
21
+ seed: 0
22
+ deterministic: true
23
+ single_cls: false
24
+ rect: false
25
+ cos_lr: false
26
+ close_mosaic: 10
27
+ resume: false
28
+ amp: true
29
+ fraction: 1.0
30
+ profile: false
31
+ freeze: null
32
+ multi_scale: false
33
+ overlap_mask: true
34
+ mask_ratio: 4
35
+ dropout: 0.0
36
+ val: true
37
+ split: val
38
+ save_json: false
39
+ save_hybrid: false
40
+ conf: null
41
+ iou: 0.7
42
+ max_det: 300
43
+ half: false
44
+ dnn: false
45
+ plots: true
46
+ source: null
47
+ vid_stride: 1
48
+ stream_buffer: false
49
+ visualize: false
50
+ augment: false
51
+ agnostic_nms: false
52
+ classes: null
53
+ retina_masks: false
54
+ embed: null
55
+ show: false
56
+ save_frames: false
57
+ save_txt: false
58
+ save_conf: false
59
+ save_crop: false
60
+ show_labels: true
61
+ show_conf: true
62
+ show_boxes: true
63
+ line_width: null
64
+ format: torchscript
65
+ keras: false
66
+ optimize: false
67
+ int8: false
68
+ dynamic: false
69
+ simplify: true
70
+ opset: null
71
+ workspace: 4
72
+ nms: false
73
+ lr0: 0.001
74
+ lrf: 0.01
75
+ momentum: 0.937
76
+ weight_decay: 0.0005
77
+ warmup_epochs: 3.0
78
+ warmup_momentum: 0.8
79
+ warmup_bias_lr: 0.1
80
+ box: 7.5
81
+ cls: 0.5
82
+ dfl: 1.5
83
+ pose: 12.0
84
+ kobj: 1.0
85
+ label_smoothing: 0.0
86
+ nbs: 64
87
+ hsv_h: 0.015
88
+ hsv_s: 0.7
89
+ hsv_v: 0.4
90
+ degrees: 0.0
91
+ translate: 0.1
92
+ scale: 0.5
93
+ shear: 0.0
94
+ perspective: 0.0
95
+ flipud: 0.0
96
+ fliplr: 0.5
97
+ bgr: 0.0
98
+ mosaic: 1.0
99
+ mixup: 0.0
100
+ copy_paste: 0.0
101
+ copy_paste_mode: flip
102
+ auto_augment: randaugment
103
+ erasing: 0.4
104
+ crop_fraction: 1.0
105
+ cfg: null
106
+ tracker: botsort.yaml
107
+ save_dir: runs/segment/train
train/confusion_matrix.png ADDED
train/confusion_matrix_normalized.png ADDED
train/events.out.tfevents.1728335683.9839c7bb0a99.805.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d35284e21c2819a54301e5946bc97531ac361c0eacd02b620091c617b711acc
3
+ size 369831
train/labels.jpg ADDED
train/labels_correlogram.jpg ADDED
train/results.csv ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ epoch, train/box_loss, train/seg_loss, train/cls_loss, train/dfl_loss, metrics/precision(B), metrics/recall(B), metrics/mAP50(B), metrics/mAP50-95(B), metrics/precision(M), metrics/recall(M), metrics/mAP50(M), metrics/mAP50-95(M), val/box_loss, val/seg_loss, val/cls_loss, val/dfl_loss, lr/pg0, lr/pg1, lr/pg2
2
+ 1, 1.2214, 1.5429, 2.1908, 1.0191, 0.80561, 0.38772, 0.54604, 0.34787, 0.81857, 0.39396, 0.56012, 0.35789, 1.2124, 1.5207, 2.7093, 0.97472, 0.0006595, 0.0006595, 0.0006595
3
+ 2, 1.2193, 1.4241, 1.4966, 1.0172, 0.65498, 0.52599, 0.54521, 0.32335, 0.67202, 0.5197, 0.54288, 0.30604, 1.4595, 2.4798, 1.8114, 1.1231, 0.0012999, 0.0012999, 0.0012999
4
+ 3, 1.2194, 1.3912, 1.3353, 1.0251, 0.61261, 0.59459, 0.58907, 0.3618, 0.62046, 0.59477, 0.58869, 0.33413, 1.3919, 2.673, 1.6343, 1.0845, 0.0019139, 0.0019139, 0.0019139
5
+ 4, 1.1408, 1.2995, 1.1728, 0.99348, 0.68155, 0.63627, 0.6567, 0.40711, 0.6799, 0.6341, 0.65297, 0.38759, 1.2875, 1.6648, 1.3824, 1.0703, 0.0018812, 0.0018812, 0.0018812
6
+ 5, 1.0991, 1.2599, 1.1077, 0.98464, 0.66698, 0.71518, 0.75026, 0.48769, 0.67561, 0.69711, 0.72841, 0.44203, 1.2156, 1.6815, 1.1679, 0.98136, 0.0018416, 0.0018416, 0.0018416
7
+ 6, 1.0965, 1.2526, 1.0923, 0.98152, 0.70372, 0.6864, 0.76461, 0.50804, 0.71681, 0.67983, 0.73161, 0.42694, 1.1148, 1.9513, 1.1063, 1.018, 0.001802, 0.001802, 0.001802
8
+ 7, 1.0508, 1.1693, 1.0345, 0.9616, 0.72594, 0.5738, 0.62256, 0.43054, 0.73383, 0.58004, 0.62464, 0.37344, 1.2083, 3.6686, 1.6237, 1.0162, 0.0017624, 0.0017624, 0.0017624
9
+ 8, 1.0216, 1.1254, 1.0151, 0.96056, 0.76311, 0.7501, 0.81882, 0.56422, 0.77353, 0.75273, 0.82201, 0.54035, 1.0317, 1.2205, 1.0531, 0.96245, 0.0017228, 0.0017228, 0.0017228
10
+ 9, 0.99083, 1.1217, 1.0098, 0.96123, 0.73027, 0.74863, 0.80821, 0.56825, 0.75494, 0.71933, 0.78909, 0.49289, 1.0497, 1.4352, 0.96885, 0.95203, 0.0016832, 0.0016832, 0.0016832
11
+ 10, 0.96258, 1.1012, 0.95121, 0.94129, 0.77744, 0.72765, 0.80671, 0.56429, 0.78855, 0.73805, 0.81928, 0.52874, 1.0358, 1.3377, 0.93696, 0.95575, 0.0016436, 0.0016436, 0.0016436
12
+ 11, 0.98488, 1.1035, 0.96335, 0.94748, 0.77466, 0.70686, 0.75334, 0.53727, 0.77597, 0.70686, 0.73912, 0.48633, 1.0221, 1.2339, 1.0971, 0.94276, 0.001604, 0.001604, 0.001604
13
+ 12, 0.94397, 1.0978, 0.92071, 0.93184, 0.77563, 0.76923, 0.8352, 0.58539, 0.7721, 0.71933, 0.76667, 0.45385, 1.0255, 1.6126, 0.9058, 0.94116, 0.0015644, 0.0015644, 0.0015644
14
+ 13, 0.91169, 1.0378, 0.91005, 0.92927, 0.75599, 0.7422, 0.80749, 0.57165, 0.78381, 0.71518, 0.79921, 0.52907, 0.97194, 1.1433, 0.98101, 0.94217, 0.0015248, 0.0015248, 0.0015248
15
+ 14, 0.89138, 1.0025, 0.91553, 0.91801, 0.77852, 0.76715, 0.83291, 0.60767, 0.76606, 0.74888, 0.81436, 0.51979, 0.9529, 1.3069, 0.90196, 0.92839, 0.0014852, 0.0014852, 0.0014852
16
+ 15, 0.88864, 1.0221, 0.8807, 0.93338, 0.77293, 0.72185, 0.80638, 0.58785, 0.77516, 0.72393, 0.8041, 0.51565, 0.97558, 1.4388, 0.90639, 0.93361, 0.0014456, 0.0014456, 0.0014456
17
+ 16, 0.91355, 1.0669, 0.8854, 0.92989, 0.74705, 0.77547, 0.83566, 0.62642, 0.74856, 0.76748, 0.82192, 0.5314, 0.91405, 1.2985, 0.88038, 0.91803, 0.001406, 0.001406, 0.001406
18
+ 17, 0.86008, 1.0278, 0.85581, 0.9102, 0.7987, 0.77131, 0.86379, 0.63678, 0.83301, 0.74669, 0.85544, 0.54456, 0.88911, 1.195, 0.8962, 0.93017, 0.0013664, 0.0013664, 0.0013664
19
+ 18, 0.87266, 1.0008, 0.84455, 0.91807, 0.77492, 0.75884, 0.84862, 0.63616, 0.76908, 0.74428, 0.82119, 0.53369, 0.88428, 1.1101, 0.8726, 0.91211, 0.0013268, 0.0013268, 0.0013268
20
+ 19, 0.86448, 0.97767, 0.83377, 0.91644, 0.81617, 0.71997, 0.82479, 0.62713, 0.81721, 0.71726, 0.81107, 0.55809, 0.85545, 1.1587, 0.87079, 0.89712, 0.0012872, 0.0012872, 0.0012872
21
+ 20, 0.84699, 1.0359, 0.82086, 0.91449, 0.79865, 0.7669, 0.84509, 0.6347, 0.79399, 0.76119, 0.83554, 0.56793, 0.89197, 1.1127, 0.82478, 0.91852, 0.0012476, 0.0012476, 0.0012476
22
+ 21, 0.82644, 0.94175, 0.80975, 0.90036, 0.82138, 0.76299, 0.86761, 0.65216, 0.82547, 0.75715, 0.85447, 0.58079, 0.8799, 1.1281, 0.8361, 0.9122, 0.001208, 0.001208, 0.001208
23
+ 22, 0.83119, 0.92848, 0.82289, 0.90281, 0.7982, 0.76923, 0.85626, 0.64567, 0.79435, 0.76507, 0.84206, 0.5726, 0.9046, 1.2193, 0.82484, 0.91299, 0.0011684, 0.0011684, 0.0011684
24
+ 23, 0.83148, 0.94383, 0.79403, 0.90803, 0.82154, 0.75609, 0.85679, 0.67347, 0.81702, 0.75194, 0.84747, 0.58395, 0.77963, 1.0504, 0.82648, 0.88883, 0.0011288, 0.0011288, 0.0011288
25
+ 24, 0.7973, 0.89282, 0.78616, 0.90181, 0.78208, 0.78343, 0.84587, 0.62556, 0.81883, 0.74012, 0.82713, 0.56283, 0.92522, 1.2843, 0.83733, 0.92111, 0.0010892, 0.0010892, 0.0010892
26
+ 25, 0.79522, 0.88924, 0.76636, 0.90081, 0.79097, 0.82744, 0.87605, 0.65686, 0.78831, 0.82328, 0.86919, 0.57925, 0.83084, 1.0182, 0.76624, 0.89929, 0.0010496, 0.0010496, 0.0010496
27
+ 26, 0.78573, 0.90536, 0.77676, 0.89462, 0.79849, 0.76612, 0.85106, 0.63161, 0.81266, 0.75884, 0.84518, 0.59019, 0.94643, 1.1114, 0.80242, 0.91084, 0.00101, 0.00101, 0.00101
28
+ 27, 0.78642, 0.88444, 0.77939, 0.90316, 0.83813, 0.59206, 0.6429, 0.47387, 0.8499, 0.60038, 0.65197, 0.4348, 0.95605, 1.2264, 1.3798, 0.9706, 0.0009704, 0.0009704, 0.0009704
29
+ 28, 0.76556, 0.91022, 0.77959, 0.88952, 0.80315, 0.7719, 0.86168, 0.68114, 0.80315, 0.7719, 0.85476, 0.60223, 0.78661, 0.98526, 0.76368, 0.88277, 0.0009308, 0.0009308, 0.0009308
30
+ 29, 0.7518, 0.86811, 0.72682, 0.88716, 0.83468, 0.78725, 0.88591, 0.6709, 0.83041, 0.77755, 0.86529, 0.55497, 0.87102, 1.271, 0.76791, 0.8987, 0.0008912, 0.0008912, 0.0008912
31
+ 30, 0.7627, 0.87697, 0.74168, 0.89444, 0.77715, 0.77547, 0.84555, 0.6322, 0.84028, 0.71726, 0.83812, 0.56659, 0.91696, 1.1278, 0.84528, 0.9125, 0.0008516, 0.0008516, 0.0008516
32
+ 31, 0.72874, 0.87467, 0.73588, 0.88381, 0.75445, 0.81761, 0.87057, 0.69507, 0.77176, 0.80665, 0.87185, 0.60216, 0.77257, 1.0824, 0.76705, 0.88735, 0.000812, 0.000812, 0.000812
33
+ 32, 0.74112, 0.88367, 0.73188, 0.88887, 0.83319, 0.78919, 0.87567, 0.69046, 0.83907, 0.78043, 0.8652, 0.60349, 0.79865, 1.1087, 0.76774, 0.88496, 0.0007724, 0.0007724, 0.0007724
34
+ 33, 0.72301, 0.86998, 0.72368, 0.87505, 0.86331, 0.79834, 0.891, 0.69452, 0.85028, 0.78586, 0.86938, 0.57512, 0.74335, 1.0872, 0.7394, 0.87936, 0.0007328, 0.0007328, 0.0007328
35
+ 34, 0.71396, 0.85897, 0.72709, 0.87959, 0.82809, 0.80117, 0.89161, 0.70377, 0.84849, 0.78586, 0.88216, 0.58459, 0.74065, 1.0814, 0.72134, 0.87414, 0.0006932, 0.0006932, 0.0006932
36
+ 35, 0.70367, 0.85026, 0.71868, 0.87231, 0.85251, 0.7811, 0.87996, 0.69492, 0.84911, 0.76715, 0.86437, 0.59943, 0.73938, 0.99263, 0.73282, 0.88862, 0.0006536, 0.0006536, 0.0006536
37
+ 36, 0.68464, 0.84517, 0.69067, 0.87708, 0.85596, 0.78378, 0.87964, 0.70402, 0.85615, 0.77954, 0.87112, 0.60684, 0.76646, 1.0346, 0.71888, 0.89025, 0.000614, 0.000614, 0.000614
38
+ 37, 0.68324, 0.78535, 0.6734, 0.8735, 0.84933, 0.81705, 0.90039, 0.70646, 0.85012, 0.81497, 0.89048, 0.61067, 0.76407, 1.0041, 0.70446, 0.89874, 0.0005744, 0.0005744, 0.0005744
39
+ 38, 0.67981, 0.8166, 0.67134, 0.86969, 0.84761, 0.77339, 0.89134, 0.69257, 0.85539, 0.77131, 0.88727, 0.60207, 0.78835, 1.132, 0.73067, 0.89788, 0.0005348, 0.0005348, 0.0005348
40
+ 39, 0.67359, 0.81226, 0.66749, 0.86991, 0.84529, 0.79418, 0.89584, 0.69845, 0.84216, 0.77547, 0.88012, 0.59507, 0.78475, 1.13, 0.70427, 0.89392, 0.0004952, 0.0004952, 0.0004952
41
+ 40, 0.65663, 0.81013, 0.64708, 0.86751, 0.84237, 0.81103, 0.8978, 0.71852, 0.83373, 0.80272, 0.88899, 0.63009, 0.73187, 0.94543, 0.66649, 0.88921, 0.0004556, 0.0004556, 0.0004556
42
+ 41, 0.64142, 0.79722, 0.64417, 0.85333, 0.84069, 0.82536, 0.89875, 0.71867, 0.84705, 0.8316, 0.90311, 0.60921, 0.69416, 0.98103, 0.66194, 0.8819, 0.000416, 0.000416, 0.000416
43
+ 42, 0.62102, 0.75933, 0.64011, 0.85073, 0.86772, 0.80249, 0.89924, 0.74168, 0.86997, 0.80457, 0.89638, 0.61304, 0.646, 0.87011, 0.68518, 0.86863, 0.0003764, 0.0003764, 0.0003764
44
+ 43, 0.6069, 0.73267, 0.62371, 0.85501, 0.83573, 0.81442, 0.89458, 0.73795, 0.83143, 0.79981, 0.87732, 0.60391, 0.6561, 0.87884, 0.68161, 0.8814, 0.0003368, 0.0003368, 0.0003368
45
+ 44, 0.58494, 0.73093, 0.61359, 0.84736, 0.84658, 0.80303, 0.90719, 0.75154, 0.85812, 0.7921, 0.89992, 0.62371, 0.63866, 0.84058, 0.6437, 0.87402, 0.0002972, 0.0002972, 0.0002972
46
+ 45, 0.57746, 0.73389, 0.61069, 0.84335, 0.83905, 0.82121, 0.91038, 0.75587, 0.84545, 0.82536, 0.91307, 0.63763, 0.63547, 0.79355, 0.63799, 0.87029, 0.0002576, 0.0002576, 0.0002576
47
+ 46, 0.58083, 0.70004, 0.6014, 0.84875, 0.85539, 0.83784, 0.91005, 0.7503, 0.85555, 0.83368, 0.90529, 0.62846, 0.64953, 0.89492, 0.65426, 0.87693, 0.000218, 0.000218, 0.000218
48
+ 47, 0.57283, 0.71877, 0.58759, 0.84416, 0.85442, 0.82744, 0.90743, 0.75255, 0.85905, 0.82952, 0.90601, 0.62593, 0.62917, 0.79204, 0.6382, 0.87372, 0.0001784, 0.0001784, 0.0001784
49
+ 48, 0.56094, 0.70539, 0.57692, 0.84046, 0.86826, 0.82536, 0.91414, 0.76279, 0.86826, 0.82536, 0.90988, 0.64397, 0.62686, 0.80126, 0.6229, 0.87639, 0.0001388, 0.0001388, 0.0001388
50
+ 49, 0.54992, 0.68891, 0.55815, 0.84118, 0.86332, 0.81289, 0.90625, 0.76698, 0.87152, 0.81913, 0.90567, 0.64469, 0.61338, 0.78897, 0.63158, 0.86774, 9.92e-05, 9.92e-05, 9.92e-05
51
+ 50, 0.54355, 0.67228, 0.55954, 0.84253, 0.88058, 0.82744, 0.91263, 0.76181, 0.8828, 0.82952, 0.91154, 0.64558, 0.61629, 0.82249, 0.61876, 0.87684, 5.96e-05, 5.96e-05, 5.96e-05
train/results.png ADDED
train/train_batch0.jpg ADDED
train/train_batch1.jpg ADDED
train/train_batch2.jpg ADDED
train/train_batch3720.jpg ADDED
train/train_batch3721.jpg ADDED
train/train_batch3722.jpg ADDED
train/val_batch0_labels.jpg ADDED
train/val_batch0_pred.jpg ADDED
train/val_batch1_labels.jpg ADDED
train/val_batch1_pred.jpg ADDED
train/val_batch2_labels.jpg ADDED
train/val_batch2_pred.jpg ADDED
train/weights/best.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:34e33b9650fd765389661c88b26f8a71a63a6f2db846c73ec54afb3b7898dc55
3
+ size 5969949
train/weights/last.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0f4727578847dbfaf66a6b4db6d7072fe825cf1efb7aca2976ce4633667a7c0e
3
+ size 5969949
yolo11n-seg-fish-trained.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d30ab4878b7f526bba0c13ffd4ec718ab3dfeee7b2f8cc919e70d1962b8628dd
3
+ size 6105809
yolo11n-seg.gif ADDED

Git LFS Details

  • SHA256: 53a61978dbb9a3c4210cb9c71148f76cecf8d4abf1623c3b84fc60d57eec539b
  • Pointer size: 132 Bytes
  • Size of remote file: 3.3 MB