File size: 15,067 Bytes
d90b3a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 |
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
try:
from mamba_ssm.ops.selective_scan_interface import (
selective_scan_ref,
selective_scan_fn,
mamba_inner_fn,
)
from causal_conv1d import causal_conv1d_fn
import einops
except ModuleNotFoundError:
print(
"Unable to import Mamba kernels. Install them from our requirements/requirements-mamba.txt, \
or directly from https://github.com/state-spaces/mamba"
)
pass
from megatron.model.norms import get_norm
from megatron import mpu
# Mamba sublayer, with tensor parallelism
class ParallelMambaBlock(nn.Module):
def __init__(
self,
neox_args,
init_method,
output_layer_init_method,
):
super().__init__()
self.neox_args = neox_args
dtype = {
"fp16": torch.float16,
"bf16": torch.bfloat16,
"fp32": torch.float32,
}[neox_args.precision]
self.precision = dtype
factory_kwargs = {"device": torch.cuda.current_device(), "dtype": dtype}
assert not (
neox_args.mamba_use_bias_in_linears and neox_args.mamba_inner_func_fusion
), "Mamba fused inner fn and bias in x_proj not compatible!"
assert (
neox_args.intermediate_size == None or neox_args.expansion_factor == None
), "Must pass either the absolute intermediate size or the relative expansion factor for the mamba projections"
# set variables, mostly following mamba defaults
self.d_model = neox_args.hidden_size
self.d_state = 16 # state dimensions per channel
self.d_conv = 4 # convolution width
if neox_args.intermediate_size:
self.d_inner = neox_args.intermediate_size
else:
self.expand = (
neox_args.expansion_factor if neox_args.expansion_factor else 2
)
self.d_inner = int(self.expand * self.d_model)
self.dt_rank = math.ceil(self.d_model / 16) # rank of dt / Delta parameter
self.dt_scale = 1.0
self.dt_init = "random"
self.dt_min, self.dt_max, self.dt_init_floor = 0.001, 0.1, 1e-4
assert self.dt_init in ["constant", "random"]
# TP-specific setup
world_size = mpu.get_model_parallel_world_size()
self.d_inner_per_rank = mpu.divide(self.d_inner, world_size)
if neox_args.mamba_inner_func_fusion and world_size > 1:
# as with gpt-j residual, we must manually reduce output from final proj
# across TP ranks, since it is not done by fused mamba_inner_fn .
self.reduce = mpu.mappings.reduce_from_model_parallel_region
# up-projection.
self.in_proj = mpu.ColumnParallelLinear(
neox_args=neox_args,
input_size=self.d_model,
output_size=self.d_inner * 2,
gather_output=False,
init_method=init_method,
skip_bias_add=not neox_args.mamba_use_bias_in_linears,
bias=neox_args.mamba_use_bias_in_linears,
)
# convolution (parallelized across d_inner)
self.conv1d = nn.Conv1d(
in_channels=self.d_inner_per_rank,
out_channels=self.d_inner_per_rank,
bias=neox_args.mamba_use_bias_in_conv,
kernel_size=self.d_conv,
groups=self.d_inner_per_rank,
padding=self.d_conv - 1,
**factory_kwargs,
)
# Conv bias sometimes in 32-bit erroneously, when holding other parameters in fp32.
# Uncertain why
self.conv1d.to(self.precision)
self.act_fn = F.silu # we do not allow for other activation fns
# x_proj corresponds to s_B(x), s_C(x), s_Delta(x)
# in https://arxiv.org/pdf/2312.00752.pdf Algorithm 2
# (computes data-dependent B, C, Delta/dt)
self.x_proj = mpu.RowParallelLinear(
neox_args=neox_args,
input_size=self.d_inner,
output_size=self.dt_rank + self.d_state * 2,
input_is_parallel=True,
init_method=init_method,
skip_bias_add=not neox_args.mamba_use_bias_in_linears,
parallel_output=True,
bias=neox_args.mamba_use_bias_in_linears,
)
# up-project dt / Delta from dt_rank to d_inner
# dt_proj 's bias is a special case and should be kept always turned on -- Alg. 2 in the Mamba paper (https://arxiv.org/abs/2312.00752)
# defines Delta as Delta = Tau_{Delta}(Parameter + s_{Delta}(x)) where s_{Delta}(x) = Broadcast_{D}(Linear_{1}(x))
# or as they further explain in section 3.6 can be also s_{Delta}(x) = Linear_{D}(Linear_{R}(x)) where Linear_R
# is the delta portion of x_proj and Linear_D is the dt_proj weight. Then, the Parameter term from Alg. 2 can
# be viewed as the bias term in dt_proj, with a special initialization from https://arxiv.org/abs/2206.12037
self.dt_proj = nn.Linear(
self.dt_rank, self.d_inner_per_rank, bias=True, **factory_kwargs
)
# special init for dt_proj
dt_init_std = (self.dt_rank**-0.5) * self.dt_scale
if self.dt_init == "constant":
nn.init.constant_(self.dt_proj.weight, dt_init_std)
elif self.dt_init == "random":
nn.init.uniform_(self.dt_proj.weight, -dt_init_std, dt_init_std)
else:
raise NotImplementedError
# more dt_proj init stuff. copied from https://github.com/state-spaces/mamba/blob/009bec5ee37f586844a3fc89c040a9c1a9d8badf/mamba_ssm/modules/mamba_simple.py#L91-L101
dt = torch.exp(
torch.rand(self.d_inner_per_rank, **factory_kwargs)
* (math.log(self.dt_max) - math.log(self.dt_min))
+ math.log(self.dt_min)
).clamp(min=self.dt_init_floor)
# Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759
inv_dt = dt + torch.log(-torch.expm1(-dt))
with torch.no_grad():
self.dt_proj.bias.copy_(inv_dt)
# initialize A . uses S4D real initialization
A = einops.repeat(
torch.arange(
1,
self.d_state + 1,
dtype=torch.float32,
device=torch.cuda.current_device(),
),
"n -> d n",
d=self.d_inner_per_rank,
).contiguous()
A_log = torch.log(A).to(
torch.float32
) # Keep in fp32, following https://github.com/state-spaces/mamba#precision and code comments
self.A_log = nn.Parameter(A_log)
self.A_log._no_weight_decay = (
True # setting this attribute turns off weight decay for this param
)
# setting this attribute prevents deeperspeed from casting this param to fp32
# requires DeepersSpeed commit https://github.com/EleutherAI/DeeperSpeed/commit/6d097beccc4e3b0ac806c7d975f8c10d4689de26 or later
if self.neox_args.mamba_selective_fp32_params:
self.A_log._deepspeed_no_cast = True
# D parameter
self.D = nn.Parameter(
torch.ones(
self.d_inner_per_rank,
device=torch.cuda.current_device(),
dtype=torch.float32,
)
).to(
torch.float32
) # Keep in fp32, following https://github.com/state-spaces/mamba#precision and code comments
self.D._no_weight_decay = (
True # setting this attribute turns off weight decay for this param
)
# setting this attribute prevents deeperspeed from casting this param to fp32
# requires DeeperSpeed commit https://github.com/EleutherAI/DeeperSpeed/commit/6d097beccc4e3b0ac806c7d975f8c10d4689de26 or later
if self.neox_args.mamba_selective_fp32_params:
self.D._deepspeed_no_cast = True
# out down-projection.
# use "single_residual_scaled_normal"
# for output_layer_init_method
# to perform gpt-2 style scaled init as done in Mamba paper.
self.out_proj = mpu.RowParallelLinear(
neox_args=neox_args,
input_size=self.d_inner,
output_size=self.d_model,
input_is_parallel=True,
init_method=output_layer_init_method,
skip_bias_add=not neox_args.mamba_use_bias_in_linears,
bias=neox_args.mamba_use_bias_in_linears,
parallel_output=False,
)
def selective_scan(
self,
x,
dt,
A,
B,
C,
D,
z=None,
delta_bias=None,
delta_softplus=True,
):
if not self.neox_args.mamba_selective_scan_fusion:
y = selective_scan_ref(
u=x,
delta=dt,
A=A,
B=B,
C=C,
D=D,
z=z,
delta_bias=delta_bias,
delta_softplus=delta_softplus,
return_last_state=False,
)
else:
y = selective_scan_fn(
x,
dt,
A,
B,
C,
D=D,
z=z,
delta_bias=delta_bias,
delta_softplus=delta_softplus,
return_last_state=False,
)
return y
def forward(self, hidden_states):
""" """
# TODO: support inference natively in neox.
# For now, we only handle training (parallel scan).
assert self.training, "Mamba in NeoX does not support inference!"
# hidden_states: [sq, b, h]
seqlen, batch, dim = hidden_states.shape
# first up: perform in_proj
xz, _ = self.in_proj(hidden_states)
xz = einops.rearrange(xz, "l b d -> b d l")
A = -torch.exp(self.A_log.float()) # (d_inner, d_state)
if self.neox_args.mamba_inner_func_fusion:
# =================
# Fused mamba inner
# =================
# mamba provides a mamba_inner fn that computes the entire (post-in_proj) Mamba block.
# we want to use it if we can, as it saves memory and provides speedups.
# equivalent to use_fast_path=True in state-spaces/mamba.
out = mamba_inner_fn(
xz,
self.conv1d.weight,
# for some bizarre reason this becomes fp32 sometime after init, when A and D held in fp32.
# cast it manually if the bias exists
self.conv1d.bias.to(self.precision)
if self.conv1d.bias is not None
else self.conv1d.bias,
self.x_proj.weight,
self.dt_proj.weight,
self.out_proj.weight,
self.out_proj.bias,
A,
None, # B is input-dependent, will compute from x_proj
None, # C is input-dependent, will compute from x_proj
self.D.float(),
delta_bias=self.dt_proj.bias.float(),
delta_softplus=True,
)
if getattr(self, "reduce", None):
# manually reduce after mamba_inner_fn
# to collect outputs from different TP ranks.
# handled by running self.out_proj(y) below
# so only needed here.
out = self.reduce(out)
out = einops.rearrange(out, "b l h -> l b h")
return out
x, z = xz.chunk(2, dim=1)
# ===========
# Convolution
# ===========
if not self.neox_args.mamba_causal_conv_fusion:
self.conv1d.to(self.precision) # required if keeping fp32 A_log, D
x = self.act_fn(self.conv1d(x)[..., :seqlen])
else:
# Note: this requires silu as activation.
x = causal_conv1d_fn(
x=x,
weight=einops.rearrange(self.conv1d.weight, "d 1 w -> d w"),
bias=self.conv1d.bias.to(self.precision)
if self.conv1d.bias is not None
else self.conv1d.bias,
activation="silu",
)
# ==============
# SSM (S6) layer
# ==============
# project: perform s_B, s_C, s_Delta projections
x_dbl, _ = self.x_proj(einops.rearrange(x, "b d l -> (b l) d"))
# split into component dt, B, C
dt, B, C = torch.split(
x_dbl, [self.dt_rank, self.d_state, self.d_state], dim=-1
)
# up-project Delta / dt
dt = self.dt_proj.weight @ dt.t()
dt = einops.rearrange(dt, "d (b l) -> b d l", l=seqlen)
# rearrange B, C
B = einops.rearrange(B, "(b l) d_state -> b d_state l", l=seqlen).contiguous()
C = einops.rearrange(C, "(b l) d_state -> b d_state l", l=seqlen).contiguous()
# perform selective scan.
y = self.selective_scan(
x,
dt,
A,
B,
C,
self.D.float(),
z=z,
delta_bias=self.dt_proj.bias.float(),
delta_softplus=True,
)
# ===============
# Down-Projection
# ===============
y = einops.rearrange(y, "b d l -> b l d")
out, _ = self.out_proj(y)
out = einops.rearrange(out, "b l h -> l b h")
return out
class ParallelMambaResidualLayer(nn.Module):
"""
Pre-norm Mamba Block with residual connection. No parallelism yet supported.
"""
def __init__(
self,
neox_args,
init_method,
output_layer_init_method,
layer_number,
):
super().__init__()
# TODO: allow for residual in fp32 if it helps?
self.layer_number = layer_number
# TODO: Add support for triton RMSNorm fused kernel at https://github.com/state-spaces/mamba/blob/v1.2.0/mamba_ssm/ops/triton/layernorm.py
norm, eps = get_norm(neox_args)
self.norm = norm(neox_args.hidden_size, eps=eps)
self.mixer = ParallelMambaBlock(
neox_args=neox_args,
init_method=init_method,
output_layer_init_method=output_layer_init_method,
)
def forward(self, x, attention_mask=None, layer_past=None):
# pseudocode:
# x = x + mixer(norm(x))
residual = x
hidden_states = self.mixer(self.norm(x))
return hidden_states + residual
class ParallelMambaResidualLayerPipe(ParallelMambaResidualLayer):
"""Extends MambaResidualLayer to forward attention_mask through the pipeline. DeepSpeed requires this."""
def forward(self, args):
assert (
len(args) == 2
), "MambaResidualLayerPipe expects 2 arguments - hidden_states and attention_mask"
hidden_states, attention_mask = args
# we are returning just [hidden_states, mask]
return super().forward(hidden_states, attention_mask), attention_mask
|