File size: 64,444 Bytes
d90b3a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 |
# Copyright (c) 2024, EleutherAI
# This file is based on code by the authors denoted below and has been modified from its original version.
#
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This file has been modified from its original version
#
"""Pretrain utilities."""
from datetime import datetime
from functools import partial
from collections import defaultdict
import math
import sys
from contextlib import nullcontext
import torch
import torch.nn.functional as F
import deepspeed
from deepspeed.runtime.data_pipeline.curriculum_scheduler import CurriculumScheduler
import numpy as np
from megatron.utils import (
Timers,
init_wandb,
get_ltor_masks_and_position_ids,
reduce_losses,
)
from megatron import print_rank_0, mpu
from megatron.model import (
GPT2ModelPipe,
SoftEmbedding,
get_params_for_weight_decay_optimization,
mark_norms_for_sequence_parallel_grad_sync,
)
from megatron.mpu.mappings import gather_from_model_parallel_region
from megatron.checkpointing import load_checkpoint, save_checkpoint
from megatron.data.data_utils import (
build_train_valid_test_data_loaders,
shift_and_wrap_data_loaders,
)
from megatron.initialize import initialize_megatron
from megatron.learning_rates import AnnealingLR
from megatron.logging import tb_wandb_log, training_log
from megatron.utils import (
OverflowMonitor,
get_noise_scale_logger,
get_total_params,
CharCounter,
)
from megatron.model.gpt2_model import cross_entropy
from megatron.mpu import vocab_parallel_cross_entropy
from pickle import dump
import os
def mup_weights_reinit(neox_args, model):
def has_method(o, name):
return callable(getattr(o, name, None))
for layer in model.modules():
# This normally would happen in set_base_shapes if we actually were able to use the MuReadout class
if hasattr(layer, "mup_rescale_parameters") and layer.mup_rescale_parameters:
layer._rescale_parameters()
if has_method(layer, "mup_reinitialize_weights"):
layer.mup_reinitialize_weights(neox_args)
def save_base_shapes(neox_args, base_shapes, use_cache):
# Instantiation of the base model fails in the init function (init_functions.py) because we haven't called set_base_shapes on it at this point, so disable it temporarily here
neox_args.use_mup = False
base_model = GPT2ModelPipe(
neox_args=neox_args,
num_tokentypes=0,
parallel_output=True if neox_args.train_impl != "rm" else False,
topology=mpu.get_topology(),
use_cache=use_cache,
)
if not neox_args.is_pipe_parallel:
base_model = base_model.to_sequential()
try:
import mup
except ModuleNotFoundError:
print("Please install mup https://github.com/microsoft/mup")
raise Exception
base_shapes = mup.get_shapes(base_model)
del base_model
old_hidden_size = neox_args.hidden_size
neox_args.hidden_size = neox_args.hidden_size * neox_args.mup_width_scale
delta_model = GPT2ModelPipe(
neox_args=neox_args,
num_tokentypes=0,
parallel_output=True if neox_args.train_impl != "rm" else False,
topology=mpu.get_topology(),
use_cache=use_cache,
)
if not neox_args.is_pipe_parallel:
delta_model = delta_model.to_sequential()
delta_shapes = mup.get_shapes(delta_model)
# change back
neox_args.use_mup = True
neox_args.hidden_size = old_hidden_size
save_shapes = f"{neox_args.base_shapes_file}.{torch.distributed.get_rank()}"
print(f"saving base shapes at {save_shapes}")
mup.make_base_shapes(base_shapes, delta_shapes, savefile=save_shapes)
print(f"base shapes saved...exiting")
sys.exit(1)
def mup_coord_check(neox_args, timers, lr_scheduler, train_data_iterator):
from megatron.mup_substitute import get_coord_data
from mup.coord_check import plot_coord_data
def lazy_model(hidden_size):
def gen():
old_hidden_size = neox_args.hidden_size
neox_args.hidden_size = hidden_size
model, optimizer, _, _ = setup_model_and_optimizer(
neox_args=neox_args, use_cache=False
)
neox_args.hidden_size = old_hidden_size
return model
return gen
models = {}
# Hidden size needs to be divisible by num attention heads
for hidden_size in (neox_args.num_attention_heads * (2**p) for p in range(2, 9)):
models[hidden_size] = lazy_model(hidden_size)
neox_args.use_mup = True
df_up = get_coord_data(
neox_args, timers, lr_scheduler, models, train_data_iterator, mup=True
)
neox_args.use_mup = False
df_sp = get_coord_data(
neox_args, timers, lr_scheduler, models, train_data_iterator, mup=False
)
plot_coord_data(df_up, save_to=f"coord_check_up.{torch.distributed.get_rank()}.jpg")
plot_coord_data(df_sp, save_to=f"coord_check_sp.{torch.distributed.get_rank()}.jpg")
print_rank_0("Saved coord check plots... exiting")
sys.exit(1)
def update_iterations(neox_args, data_loaders):
"""
Compute the number of train iterations if not specified and num_epochs, updates the neox_args object.
Note that if len(train_dataloader) % gradient_accumulation_steps != 0, this will configure neox
to do as many iterations as possible while ensuring that each example is seen *at most* train_epochs
times.
"""
if (not neox_args.do_train) or (neox_args.train_iters is not None):
pass
elif neox_args.train_iters is None and neox_args.train_epochs is None:
print_rank_0(
"ERROR:Failed to specify either train_epochs or train_iters in config file"
)
else:
global_rank = torch.distributed.get_rank()
if global_rank == 0:
train_dataloader = data_loaders["train"]
train_epochs = neox_args.train_epochs
gradient_accumulation_steps = neox_args.gradient_accumulation_steps
train_dataloader_len = len(train_dataloader)
train_iterations = (
train_dataloader_len * train_epochs
) // gradient_accumulation_steps
train_iters_tensor = torch.cuda.LongTensor([train_iterations])
else:
train_iters_tensor = torch.cuda.LongTensor([0])
torch.distributed.broadcast(train_iters_tensor, src=0)
neox_args.train_iters = train_iters_tensor[0].item()
print_rank_0(
f"Training for a total of {neox_args.train_iters} iterations, corresponding to {neox_args.train_epochs} epochs."
)
def pretrain(neox_args):
"""Main training program.
This function will run the following in the order provided:
1) initialize Megatron.
2) get train/val/test datasets.
3) setup model, optimizer and lr schedule.
4) configure data loading
5) train the model.
Arguments:
neox_args: an instance of NeoXArgs containing the configuration for pretrain
"""
# setup logging and timers
init_wandb(neox_args=neox_args)
timers = Timers(
use_wandb=neox_args.use_wandb,
tensorboard_writer=neox_args.tensorboard_writer,
comet_experiment=neox_args.comet_experiment,
)
# Initialize and get arguments, timers, and Tensorboard writer.
initialize_megatron(neox_args=neox_args)
# Create data loaders
timers("train/valid/test data loaders").start()
data_loaders = build_train_valid_test_data_loaders(neox_args=neox_args)
update_iterations(neox_args=neox_args, data_loaders=data_loaders)
timers("train/valid/test data loaders").stop()
# Model, optimizer, and learning rate.
timers("model and optimizer").start()
model, optimizer, lr_scheduler, reference_model = setup_model_and_optimizer(
neox_args=neox_args, use_cache=False, iteration=neox_args.iteration
)
timers("model and optimizer").stop()
# Make and configure iterators
timers("train/valid/test data iterators").start()
(
train_data_iterator,
valid_data_iterator,
test_data_iterator,
) = shift_and_wrap_data_loaders(neox_args=neox_args, data_loaders=data_loaders)
timers("train/valid/test data iterators").stop()
if neox_args.use_mup and neox_args.coord_check:
mup_coord_check(neox_args, timers, lr_scheduler, train_data_iterator)
# Print setup timing.
print_rank_0("done with setups ...")
timers.log(
[
"train/valid/test data loaders",
"model and optimizer",
"train/valid/test data iterators",
]
)
print_rank_0("training ...")
iteration = neox_args.iteration
# edge case: save step 0 checkpoint if requested and we're starting from step 0
if (
neox_args.save
and neox_args.extra_save_iters
and 0 in neox_args.extra_save_iters
and iteration == 0
):
save_checkpoint(
neox_args=neox_args,
iteration=iteration,
model=model,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
)
if neox_args.do_train and neox_args.train_iters > 0:
iteration = train(
neox_args=neox_args,
timers=timers,
model=model,
reference_model=reference_model,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
train_data_iterator=train_data_iterator,
valid_data_iterator=valid_data_iterator,
)
if neox_args.do_valid:
prefix = "the end of training for val data"
evaluate_and_print_results(
neox_args=neox_args,
prefix=prefix,
forward_step_func=forward_step,
data_iterator=valid_data_iterator,
model=model,
iteration=iteration,
verbose=False,
timers=timers,
reference_model=reference_model,
)
if neox_args.save and iteration != 0:
save_checkpoint(
neox_args=neox_args,
iteration=iteration,
model=model,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
)
if neox_args.do_test:
# Run on test data.
prefix = "the end of training for test data"
evaluate_and_print_results(
neox_args=neox_args,
prefix=prefix,
forward_step_func=forward_step,
data_iterator=test_data_iterator,
model=model,
iteration=iteration,
verbose=True,
timers=timers,
chart_name="test",
reference_model=reference_model,
)
def _get_batch(neox_args, tokenizer, keys, data, datatype, label_mask_zero=False):
"""Support function for get_batch / get_batch pipe (to avoid code repetition)"""
data_b = mpu.broadcast_data(keys, data, datatype)
token_key = keys[0]
label_key = keys[1] if len(keys) > 1 else None
# Unpack.
tokens_ = data_b[token_key].long()
if label_key in data_b:
label_mask = (data_b[label_key].long() >= 0)[:, 1:].contiguous()
labels = torch.where(
data_b[label_key].long() >= 0,
data_b[label_key].long(),
torch.zeros_like(data_b[label_key].long()),
)[:, 1:].contiguous()
else:
label_mask = (tokens_.long() >= 0)[:, 1:].contiguous()
labels = tokens_[:, 1:].contiguous()
if label_mask_zero:
labels = labels * label_mask
tokens = tokens_[:, :-1].contiguous()
# Get the masks and position ids.
attention_mask, loss_mask, position_ids = get_ltor_masks_and_position_ids(
data=tokens,
eod_token=neox_args.tokenizer.eod,
eod_mask_loss=neox_args.eod_mask_loss,
sliding_window_width=neox_args.sliding_window_width,
)
# combine loss masks from get_ltor_masks_and_position_ids with loss masks from data
loss_mask = label_mask.to(loss_mask.dtype) * loss_mask
return tokens, labels, loss_mask, attention_mask, position_ids
def get_batch(neox_args, data_iterator):
"""Generate a batch"""
# Items and their type.
if neox_args.train_impl in ["normal", "kto"]:
keys = ["text", "label"] if neox_args.train_label_data_paths else ["text"]
elif neox_args.train_impl in ["dpo", "rm"]:
keys = (
[["pos", "pos_label"], ["neg", "neg_label"]]
if neox_args.pos_train_label_data_paths
else [["pos"], ["neg"]]
)
datatype = torch.int64
# Broadcast data.
if data_iterator is not None:
data = next(data_iterator)
else:
data = None
if neox_args.train_impl == "normal":
return _get_batch(
neox_args=neox_args,
tokenizer=neox_args.tokenizer,
keys=keys,
data=data,
datatype=datatype,
)
elif neox_args.train_impl == "kto":
assert (
neox_args.train_micro_batch_size_per_gpu > 1
), "For KTO training, the train_micro_batch_size_per_gpu must be greater than 1."
tup = _get_batch(
neox_args=neox_args,
tokenizer=neox_args.tokenizer,
keys=keys,
data=data,
datatype=datatype,
)
# Remove the last token from the reward since we predict the next token, so
# Reward of <current prediction> will be based on the label of <next token>
rw_data = mpu.broadcast_data(["reward"], data, torch.float)["reward"][
:, :-1
].contiguous()
ref_data = (
mpu.broadcast_data(["ref"], data, torch.float)["ref"][:, :-1].contiguous()
if neox_args.precompute_model_name
else None
)
return tup + (rw_data, ref_data)
elif neox_args.train_impl in ["dpo", "rm"]:
pos_tup = _get_batch(
neox_args=neox_args,
tokenizer=neox_args.tokenizer,
keys=keys[0],
data=data,
datatype=datatype,
label_mask_zero=True,
)
neg_tup = _get_batch(
neox_args=neox_args,
tokenizer=neox_args.tokenizer,
keys=keys[1],
data=data,
datatype=datatype,
label_mask_zero=True,
)
if neox_args.precompute_model_name:
ref_data = mpu.broadcast_data(["pos_ref", "neg_ref"], data, torch.float)
else:
ref_data = {"pos_ref": None}
return [
torch.cat((pos_item, neg_item), dim=0)
for pos_item, neg_item in zip(pos_tup, neg_tup)
] + [
torch.cat((ref_data["pos_ref"], ref_data["neg_ref"]), dim=0)[
:, :-1
].contiguous()
if ref_data["pos_ref"] is not None
else None
]
def get_batch_pipe(data, neox_args, curr_scheduler=None):
"""A modification of get_batch() to work with the latest batch instead of an iterator."""
assert neox_args.train_impl not in [
"kto",
"dpo",
"rm",
], "Pipeline parallel is currently unsupported when using any of kto, dpo, rm. Set pipe_parallel_size to 0"
# Items and their type.
keys = ["text", "label"] if neox_args.train_label_data_paths else ["text"]
datatype = torch.int64
tokens, labels, loss_mask, attention_mask, position_ids = _get_batch(
neox_args, neox_args.tokenizer, keys, data, datatype
)
if curr_scheduler is not None:
# iteration + 1 to align with how/when DeepSpeed updates the buffers
curriculum_seqlen = curr_scheduler.update_difficulty(neox_args.iteration + 1)
if curriculum_seqlen < tokens.size()[1]:
# seqlen-based curriculum learning
# input_ids, position_ids, labels have size [batch size, seqlen]
# input_ids = input_ids[:, :curriculum_seqlen].contiguous()
tokens = tokens[:, :curriculum_seqlen].contiguous()
position_ids = position_ids[:, :curriculum_seqlen].contiguous()
if labels is not None:
labels = labels[:, :curriculum_seqlen].contiguous()
if loss_mask is not None:
loss_mask = loss_mask[:, :curriculum_seqlen].contiguous()
# attention_mask has size [1, 1, seqlen, seqlen]
attention_mask = attention_mask[
:, :, :curriculum_seqlen, :curriculum_seqlen
].contiguous()
# unpack data
return (tokens, position_ids, attention_mask), (labels, loss_mask)
def get_batch_sequential(forward_input, neox_args):
"""A modification of get_batch() to work with the latest batch instead of an iterator."""
attention_mask, loss_mask, position_ids = get_ltor_masks_and_position_ids(
data=forward_input[0],
eod_token=neox_args.tokenizer.eod,
eod_mask_loss=neox_args.eod_mask_loss,
)
return (forward_input[0], forward_input[1], attention_mask)
def average_losses_across_data_parallel_group(losses):
"""Reduce a tensor of losses across all GPUs."""
averaged_losses = torch.cat([loss.clone().detach().view(1) for loss in losses])
torch.distributed.all_reduce(averaged_losses, group=mpu.get_data_parallel_group())
averaged_losses = averaged_losses / torch.distributed.get_world_size(
group=mpu.get_data_parallel_group()
)
return averaged_losses
def mb_moe_loss_func(args, loss_mask, output_tensor=None):
from megatron.model import megablocks_utils
from megatron.model.megablocks_utils import moe
# NOTE: For pipeline parallelism this function will be run on the
# non-final stages to calculate load balancing loss contribution
# for the MoE layers within the stage. For these cases, output_tensor
# will be None.
loss, loss_dict = (None, {})
if False:
assert output_tensor is not None
loss, loss_dict = loss_func(loss_mask, output_tensor)
assert loss.numel() == 1
# NOTE: If recompute is enabled we will collect duplicate load
# balancing loss contributions. Prune these before calculating
# the load balancing loss.
if args.checkpoint_activations:
# Ignore load balancing loss contributions compute during
# the forward pass if recompute is turned on.
load_balancing_loss_data = moe.get_load_balancing_loss()
if args.num_layers * 2 == len(load_balancing_loss_data):
load_balancing_loss_data = load_balancing_loss_data[args.num_layers :]
moe.clear_load_balancing_loss()
for x in load_balancing_loss_data:
moe.save_load_balancing_loss(x)
# Compute the load balancing loss for all MoE layers.
megablocks_args = args = megablocks_utils.as_megablocks_args(args)
lbl = moe.batched_load_balancing_loss(megablocks_args)
moe.clear_load_balancing_loss()
# Average the load balancing loss across data parallel
# replicas and save for logging.
averaged_lbl = average_losses_across_data_parallel_group([lbl])
loss_dict["load balancing loss"] = averaged_lbl[0]
return averaged_lbl, loss_dict
def get_logp(logits, labels, force_fp32=False):
# Rather than reimplementing logp, cross entropy loss is actually logp, just inverted.
if force_fp32:
logits = logits.float()
return -vocab_parallel_cross_entropy(logits, labels)
def get_pos_neg_logp(logits, labels, force_fp32=False):
# Rather than reimplementing logp, cross entropy loss is actually logp, just inverted.
if force_fp32:
logits = logits.float()
return torch.chunk(-vocab_parallel_cross_entropy(logits, labels), 2, 0)
def forward_step(
data_iterator,
model,
neox_args,
timers,
return_logits=False,
is_train=False,
reference_model=None,
):
"""Forward step."""
if neox_args.is_pipe_parallel:
return model.eval_batch(data_iterator, return_logits=return_logits)
# Get the batch.
if neox_args.memory_profiling and neox_args.iteration:
torch.cuda.nvtx.range_push(f"Get batch")
if timers is not None:
timers("batch generator").start()
if neox_args.train_impl == "normal":
tokens, labels, loss_mask, attention_mask, position_ids = get_batch(
neox_args=neox_args, data_iterator=data_iterator
)
elif neox_args.train_impl == "kto":
(
tokens,
labels,
loss_mask,
attention_mask,
position_ids,
rewards,
ref_logp,
) = get_batch(neox_args=neox_args, data_iterator=data_iterator)
if neox_args.train_impl in ["dpo", "rm"]:
tokens, labels, loss_mask, attention_mask, position_ids, ref_logp = get_batch(
neox_args=neox_args, data_iterator=data_iterator
)
if timers is not None:
timers("batch generator").stop()
if neox_args.memory_profiling:
torch.cuda.nvtx.range_pop()
if neox_args.memory_profiling:
torch.cuda.nvtx.range_push(f"Forward pass")
metrics = {}
if neox_args.train_impl == "normal":
# Sequential returns moe_losses, but this is not yet supported by pipe parallel
maybe_tuple = model((tokens, position_ids, attention_mask), neox_args=neox_args)
if type(maybe_tuple) is tuple:
outputs, moe_losses = maybe_tuple
else:
outputs = maybe_tuple
moe_losses = []
if (
is_train
and neox_args.curriculum_learning
and neox_args.curriculum_seqlen < neox_args.seq_length
):
loss_mask = loss_mask[:, : neox_args.curriculum_seqlen].contiguous()
labels = labels[:, : neox_args.curriculum_seqlen].contiguous()
main_loss = cross_entropy(
outputs, (labels, loss_mask), _fp16=neox_args.fp16_lm_cross_entropy
)
if neox_args.moe_num_experts > 1:
if neox_args.moe_type == "deepspeed":
moe_loss = neox_args.moe_loss_coeff * sum(m.item() for m in moe_losses)
elif neox_args.moe_type == "megablocks":
moe_loss = mb_moe_loss_func(neox_args, loss_mask, outputs)[0]
else:
raise ValueError(f"Unsupported moe_type: {neox_args.moe_type}")
else:
moe_loss = 0.0
loss = main_loss + moe_loss
elif neox_args.train_impl == "rm":
maybe_tuple = model((tokens, position_ids, attention_mask), neox_args=neox_args)
if type(maybe_tuple) is tuple:
outputs, _ = maybe_tuple
else:
outputs = maybe_tuple
pos, neg = torch.chunk(outputs, 2, 0)
pos_loss_mask, neg_loss_mask = torch.chunk(loss_mask, 2, 0)
# We assume that each pos, neg pair occur in the same order
# e.g. second nonzero pos is the corresponding second nonzero neg
# and that there are also an equal number of pos and neg in each sequence.
pos_indx = pos_loss_mask.nonzero()
neg_indx = neg_loss_mask.nonzero()
# indx[:, 0] is the batch index, indx[:, 1] is the token index, we only care about the token index.
pos_indx = pos_indx[:, 1].unsqueeze(1)
neg_indx = neg_indx[:, 1].unsqueeze(1)
pos = torch.gather(pos.squeeze(), dim=1, index=pos_indx)
neg = torch.gather(neg.squeeze(), dim=1, index=neg_indx)
with torch.no_grad():
metrics["pos_values"] = pos.clone().detach().mean()
metrics["neg_values"] = neg.clone().detach().mean()
metrics["margin"] = (pos - neg).clone().detach().mean()
metrics["accuracy"] = ((pos - neg) > 0).clone().detach().float().mean()
loss = (-F.logsigmoid(pos - neg).mean()) + (
(neox_args.z_loss * (pos**2 + neg**2)).mean()
)
elif neox_args.train_impl == "dpo":
# Based on https://github.com/eric-mitchell/direct-preference-optimization/blob/main/trainers.py#L90
with torch.inference_mode():
# So we can gather token logps...
token_logp_labels = labels.clone()
pos_loss_mask, neg_loss_mask = torch.chunk(loss_mask, 2, 0)
if neox_args.dpo_reference_free:
ref_pos = 0
ref_neg = 0
elif ref_logp is None:
ref_maybe_tuple = reference_model(
(tokens, position_ids, attention_mask), neox_args=neox_args
)
if type(ref_maybe_tuple) is tuple:
# We should ignore MoE losses yeah?
ref_outputs, _ = ref_maybe_tuple
else:
ref_outputs = ref_maybe_tuple
ref_pos, ref_neg = get_pos_neg_logp(
ref_outputs, token_logp_labels, neox_args.dpo_fp32
)
else:
ref_pos, ref_neg = torch.chunk(ref_logp, 2, 0)
ref_pos = (ref_pos * pos_loss_mask).sum(-1)
ref_neg = (ref_neg * neg_loss_mask).sum(-1)
chosen_maybe_tuple = model(
(tokens, position_ids, attention_mask), neox_args=neox_args
)
if type(chosen_maybe_tuple) is tuple:
# We should ignore MoE losses yeah?
chosen_outputs, _ = chosen_maybe_tuple
else:
chosen_outputs = chosen_maybe_tuple
chosen_pos, chosen_neg = get_pos_neg_logp(
chosen_outputs, token_logp_labels, neox_args.dpo_fp32
)
chosen_pos = (chosen_pos * pos_loss_mask).sum(-1)
chosen_neg = (chosen_neg * neg_loss_mask).sum(-1)
with torch.no_grad():
# Collect metrics...
if not neox_args.dpo_reference_free:
metrics["ref_neg"] = ref_neg.clone().detach().mean()
metrics["ref_pos"] = ref_pos.clone().detach().mean()
metrics["chosen_neg"] = chosen_neg.clone().detach().mean()
metrics["chosen_pos"] = chosen_pos.clone().detach().mean()
if not neox_args.dpo_reference_free:
chosen_rewards = neox_args.dpo_beta * (
chosen_pos.clone().detach() - ref_pos.clone().detach()
)
rejected_rewards = neox_args.dpo_beta * (
chosen_neg.clone().detach() - ref_neg.clone().detach()
)
metrics["chosen_rewards"] = chosen_rewards.mean()
metrics["rejected_rewards"] = rejected_rewards.mean()
reward_acc = (chosen_rewards > rejected_rewards).float()
metrics["reward_acc"] = reward_acc.mean()
metrics["margins"] = (chosen_rewards - rejected_rewards).mean()
pi_logrations = chosen_pos - chosen_neg
ref_logrations = ref_pos - ref_neg
logits = pi_logrations - ref_logrations
loss = -F.logsigmoid(neox_args.dpo_beta * logits).mean()
elif neox_args.train_impl == "kto":
# Based on https://github.com/huggingface/trl/blob/main/trl/trainer/kto_trainer.py
# Except we don't have an extra input for KL logp, we just split the batch in half
with torch.no_grad():
# So we can gather token logps...
token_logp_labels = labels.clone()
token_logp_labels[token_logp_labels == -100] = 0
if ref_logp is None:
# Did not precompute logits....
ref_maybe_tuple = reference_model(
(tokens, position_ids, attention_mask), neox_args=neox_args
)
if type(ref_maybe_tuple) is tuple:
# We should ignore MoE losses yeah?
ref_outputs, _ = ref_maybe_tuple
else:
ref_outputs = ref_maybe_tuple
# gather across tensor parallel group
ref_outputs = gather_from_model_parallel_region(ref_outputs)
ref_logp = get_logp(ref_outputs, token_logp_labels, neox_args.kto_fp32)
else:
print(f"REF LOGP: {ref_logp.clone().detach().mean()}")
ref_logp = ref_logp * loss_mask
scaling = (rewards.sum(-1) > 0.001).float() * neox_args.kto_desirable_weight
scaling += (
rewards.sum(-1) < -0.001
).float() * neox_args.kto_undesirable_weight
pos_mask = (rewards > 0.001).float()
neg_mask = (rewards < -0.001).float()
chosen_maybe_tuple = model(
(tokens, position_ids, attention_mask), neox_args=neox_args
)
if type(chosen_maybe_tuple) is tuple:
# We should ignore MoE losses yeah?
chosen_outputs, _ = chosen_maybe_tuple
else:
chosen_outputs = chosen_maybe_tuple
chosen_outputs = gather_from_model_parallel_region(chosen_outputs)
chosen_logp = get_logp(chosen_outputs, token_logp_labels, neox_args.kto_fp32)
chosen_logp = chosen_logp * loss_mask
with torch.no_grad():
# Collect metrics...
metrics["ref_logp"] = ref_logp.clone().detach().sum(-1).mean()
metrics["policy_logp"] = chosen_logp.clone().detach().sum(-1).mean()
metrics["pos_ref_logp"] = (
(ref_logp * pos_mask).clone().detach().sum(-1).mean()
)
metrics["neg_ref_logp"] = (
(ref_logp * neg_mask).clone().detach().sum(-1).mean()
)
metrics["pos_policy_logp"] = (
(chosen_logp * pos_mask).clone().detach().sum(-1).mean()
)
metrics["neg_policy_logp"] = (
(chosen_logp * neg_mask).clone().detach().sum(-1).mean()
)
metrics["kl"] = (
chosen_logp.clone().detach() - ref_logp.clone().detach()
).sum() / loss_mask.sum()
policy_rewards = (
neox_args.kto_beta
* rewards
* (chosen_logp.clone().detach() - ref_logp.clone().detach())
)
reward_acc = (policy_rewards.sum(-1) > 0.0).float()
metrics["reward_acc"] = reward_acc.mean()
metrics["policy_rewards"] = policy_rewards.sum()
print(metrics)
pol_logp1, pol_logp2 = torch.chunk(chosen_logp, 2, 0)
ref_logp1, ref_logp2 = torch.chunk(ref_logp, 2, 0)
reward1, reward2 = torch.chunk(rewards, 2, 0)
scaling1, scaling2 = torch.chunk(scaling, 2, 0)
kl1 = torch.clamp((pol_logp1 - ref_logp1).sum(-1), min=0).mean()
kl2 = torch.clamp((pol_logp2 - ref_logp2).sum(-1), min=0).mean()
log_ratio1 = pol_logp1 - ref_logp1
log_ratio2 = pol_logp2 - ref_logp2
# TODO: Add pack_until_overflow sequence support
loss = (
0.5
* scaling1.mean(-1)
* (
1
- F.sigmoid(
(
neox_args.kto_beta
* reward1.mean(-1)
* (log_ratio1.sum(-1) - kl2.clone().detach())
)
)
)
) + (
0.5
* scaling2.mean(-1)
* (
1
- F.sigmoid(
(
neox_args.kto_beta
* reward2.mean(-1)
* (log_ratio2.sum(-1) - kl1.clone().detach())
)
)
)
)
# print(loss.shape)
loss = loss.mean()
# print(loss.shape)
if neox_args.memory_profiling:
torch.cuda.nvtx.range_pop()
if return_logits:
return loss, outputs, metrics
return loss, metrics
def get_model(neox_args, use_cache=False):
"""Build the model."""
# Build model on cpu.
print_rank_0("building GPT2 model ...")
# Temporarily disable mup so that the base model does not use the mup init functions before set_base_shapes is called below.
# If mup isn't being used anyways, this has no effect.
old_use_mup = neox_args.use_mup
neox_args.use_mup = False
if neox_args.zero_stage in [2, 3]:
if neox_args.pipe_parallel_size == 1:
print_rank_0(
"ZeRO stage 2/3 and the PipelineModule are incompatible, please set 'pipe_parallel_size' to 0 instead"
)
exit()
if neox_args.pipe_parallel_size > 1:
print_rank_0(
"ZeRO stage 2/3 and pipeline paralleism are not supported simultaneously"
)
exit()
if neox_args.model_parallel_size > 1:
print_rank_0(
"ZeRO stage 2/3 and model paralleism are not currently supported simultaneously"
)
exit()
with deepspeed.zero.Init(
config_dict_or_path=neox_args.deepspeed_config
) if neox_args.zero_stage == 3 else nullcontext() as gs:
model = GPT2ModelPipe(
neox_args=neox_args,
num_tokentypes=0,
parallel_output=True if neox_args.train_impl != "rm" else False,
topology=mpu.get_topology(),
use_cache=use_cache,
)
### soft prompt tuning stuff ###
if neox_args.soft_prompt_tuning is not None and neox_args.soft_prompt_tuning.get(
"enabled", False
):
soft_prompt = SoftEmbedding(
neox_args,
wte=getattr(model, "0").word_embeddings,
n_tokens=neox_args.soft_prompt_tuning.get("n_tokens", 10),
init_string=neox_args.soft_prompt_tuning.get("init_string", ""),
init_range=neox_args.soft_prompt_tuning.get("init_range", 0.5),
)
model.insert_layers(
layers=soft_prompt, idx=1
) # insert the soft prompt layer directly after the word embeddings
# freeze everything but the soft prompt
for name, param in model.named_parameters():
if not "soft_embedding" in name:
param.requires_grad = False
if not neox_args.is_pipe_parallel:
# Export PipeParallel model to nn.Sequential model to avoid the overhead of deepspeed's pipe parallel training
model = model.to_sequential()
neox_args.use_mup = old_use_mup
if neox_args.use_mup:
try:
import mup
except ModuleNotFoundError:
print("Please install mup https://github.com/microsoft/mup")
raise Exception
base_shapes = f"{neox_args.base_shapes_file}.{torch.distributed.get_rank()}"
if neox_args.save_base_shapes:
save_base_shapes(neox_args, base_shapes, use_cache)
mup.set_base_shapes(model, base_shapes)
# Call the mup replacement init functions on the model now that set_base_shapes has given each weight a .infshape attribute
mup_weights_reinit(neox_args, model)
if neox_args.deepspeed:
# DeepSpeed handles CUDA, FP16, and DDP components.
return model
else:
raise ValueError("Must be using deepspeed to run neox")
def get_optimizer(model, neox_args, dummy=False):
"""Set up the optimizer."""
if neox_args.no_load_optim and neox_args.deepspeed:
# Required to have something so...
dummy = True
neox_args.optimizer = {"params": {"lr": 0.0}}
neox_args.optimizer_type = "adam"
elif neox_args.no_load_optim:
return None, None
if neox_args.optimizer is None:
print_rank_0(
f"ERROR: Optimizer is None. Either set the optimizer dict in your config (if training) or set no_load_optim in your config (if inference)"
)
exit()
# Build parameter groups (weight decay and non-decay).
param_groups = get_params_for_weight_decay_optimization(model, neox_args)
print_rank_0(
f'Configuring Optimizer type: {neox_args.optimizer_type} with params: {neox_args.optimizer["params"]}'
)
if neox_args.create_moe_param_group:
from deepspeed.moe.utils import (
is_moe_param,
split_params_into_different_moe_groups_for_optimizer,
)
param_groups = split_params_into_different_moe_groups_for_optimizer(
param_groups
)
# Add model parallel attribute if it is not set.
for param_group in param_groups:
for param in param_group["params"]:
if not hasattr(param, "model_parallel"):
param.model_parallel = False
# Filter out params that don't require a grad (for soft prompt tuning, etc.)
_param_groups = []
for param_group in param_groups:
trainable_params = [p for p in param_group["params"] if p.requires_grad]
if dummy:
trainable_params = [trainable_params[0]] # just take the first one
param_group["params"] = trainable_params
_param_groups.append(param_group)
if dummy:
# Only need one.
break
param_groups = _param_groups
# If we're using mup, then the optimizer must be adam or sgd
assert not neox_args.use_mup or (
neox_args.optimizer_type.lower() == "adam"
or neox_args.optimizer_type.lower() == "sgd"
), f"If use_mup == True, you must specify either the adam or sgd optimizers. You passed: {neox_args.optimizer_type.lower()}"
if neox_args.optimizer_type.lower() in ["cpu_adam", "cpu_torch_adam"]:
if neox_args.optimizer == "cpu_torch_adam":
cpu_adam_optimizer = torch.optim.Adam
else:
from deepspeed.ops.adam import DeepSpeedCPUAdam
cpu_adam_optimizer = DeepSpeedCPUAdam
optimizer = cpu_adam_optimizer(
param_groups,
weight_decay=neox_args.weight_decay,
**neox_args.optimizer["params"],
)
elif neox_args.optimizer_type.lower() == "onebitadam":
assert neox_args.deepspeed
optimizer = None
# onebitadam needs to be instantiated within the deepspeed engine to work :|
elif neox_args.optimizer_type.lower() == "sm3":
from .optimizers import SM3
optimizer = SM3(param_groups, **neox_args.optimizer["params"])
elif neox_args.optimizer_type.lower() == "madgrad_wd":
from .optimizers import madgrad_wd
optimizer = madgrad_wd(
param_groups,
weight_decay=neox_args.weight_decay,
**neox_args.optimizer["params"],
)
elif neox_args.optimizer_type.lower() == "lion":
# if we want the deepspeed zero lion...megatron lion will throw DeepSpeed Error
if neox_args.zero_optimization["stage"] != 0:
from deepspeed.ops.lion import FusedLion
lion_optimizer = FusedLion
# if not zero
else:
from .optimizers import Lion
lion_optimizer = Lion
optimizer = lion_optimizer(
param_groups,
weight_decay=neox_args.weight_decay,
**neox_args.optimizer["params"],
)
elif neox_args.optimizer_type.lower() == "adam":
# Use Adam
if neox_args.use_mup:
try:
from mup import MuAdam
adam_optimizer = MuAdam
except ModuleNotFoundError:
print("Please install mup https://github.com/microsoft/mup")
raise Exception
else:
if neox_args.use_bnb_optimizer:
try:
import bitsandbytes as bnb
adam_optimizer = bnb.optim.Adam8bit
except ModuleNotFoundError:
print(
"Please install bitsandbytes following https://github.com/facebookresearch/bitsandbytes."
)
raise Exception
else:
try:
# default to apex as it's slightly faster
from apex.optimizers import FusedAdam as Adam
except ImportError:
# if apex isn't installed, use deepspeed's FusedAdam
print(
"WARNING: APEX not installed - defaulting to deepspeed's fused adam"
)
from deepspeed.ops.adam import FusedAdam as Adam
adam_optimizer = Adam
optimizer = adam_optimizer(
param_groups,
weight_decay=neox_args.weight_decay,
**neox_args.optimizer["params"],
)
elif neox_args.optimizer_type.lower() == "sgd":
try:
from mup import MuSGD
except ModuleNotFoundError:
print("Please install mup https://github.com/microsoft/mup")
raise Exception
optimizer = MuSGD(
param_groups,
weight_decay=neox_args.weight_decay,
**neox_args.optimizer["params"],
)
else:
raise ValueError(f"Optimizer type {neox_args.optimizer_type} not recognized")
if neox_args.deepspeed:
# fp16 wrapper is not required for DeepSpeed.
return optimizer, param_groups
else:
raise ValueError("Must be using deepspeed to run neox")
def get_learning_rate_scheduler(optimizer, neox_args):
"""Build the learning rate scheduler."""
if (neox_args.no_load_optim) and not neox_args.deepspeed:
# TODO: this should be configured as a separate arg
return None
if neox_args.deepspeed and neox_args.optimizer_type.lower() == "onebitadam":
print_rank_0(
"WARNING: onebitadam requires the lr scheduler be built by deepspeed - "
"Make sure one is added to your deepspeed config"
)
return None
# Add linear learning rate scheduler.
if neox_args.lr_decay_iters is not None:
num_iters = neox_args.lr_decay_iters
elif neox_args.lr_decay_fraction is not None:
num_iters = math.floor(neox_args.train_iters * neox_args.lr_decay_fraction)
else:
num_iters = neox_args.train_iters
num_iters = max(1, num_iters)
init_step = 0
warmup_iter = neox_args.warmup * num_iters
lr_scheduler = AnnealingLR(
optimizer,
start_lr=neox_args.lr,
warmup_iter=warmup_iter,
total_iters=num_iters,
decay_style=neox_args.lr_decay_style,
last_iter=init_step,
min_lr=neox_args.min_lr,
use_checkpoint_lr_scheduler=neox_args.use_checkpoint_lr_scheduler,
override_lr_scheduler=neox_args.override_lr_scheduler,
use_mup=neox_args.use_mup,
)
return lr_scheduler
def setup_model_and_optimizer(neox_args, use_cache=False, iteration=None):
"""Setup memory profiler"""
if neox_args.memory_profiling:
torch.cuda.memory._record_memory_history(
True,
# keep a maximum 100,000 alloc/free events from before the snapshot
trace_alloc_max_entries=100000,
trace_alloc_record_context=True,
)
"""Setup model and optimizer."""
needs_reference_model = (
(neox_args.train_impl == "dpo")
and (neox_args.precompute_model_name is None)
and (not neox_args.dpo_reference_free)
) or ((neox_args.train_impl == "kto") and (neox_args.precompute_model_name is None))
model = get_model(neox_args=neox_args, use_cache=use_cache)
if needs_reference_model:
reference_model = get_model(neox_args=neox_args, use_cache=use_cache)
else:
reference_model = None
optimizer, param_groups = get_optimizer(model=model, neox_args=neox_args)
lr_scheduler = get_learning_rate_scheduler(optimizer=optimizer, neox_args=neox_args)
if neox_args.deepspeed and needs_reference_model:
# Need an optimizer & lr_scheduler so make a very small one to keep deepspeed happy...
ref_optimizer, ref_param_groups = get_optimizer(
model=reference_model, neox_args=neox_args, dummy=True
)
ref_lr_scheduler = get_learning_rate_scheduler(
optimizer=ref_optimizer, neox_args=neox_args
)
else:
ref_optimizer, ref_param_groups, ref_lr_scheduler = None, None, None
if neox_args.deepspeed:
print_rank_0("DeepSpeed is enabled.")
_model_params = param_groups if optimizer is None else None
_lr_scheduler = lr_scheduler
model, optimizer, _, lr_scheduler = deepspeed.initialize(
model=model,
optimizer=optimizer,
args=neox_args,
lr_scheduler=_lr_scheduler,
dist_init_required=False,
model_parameters=_model_params,
# Need to remove the below so that it doesn't conflict with --deepspeed_config required by autotuning
# config_params=neox_args.deepspeed_config,
mpu=mpu if not neox_args.is_pipe_parallel else None,
)
if needs_reference_model:
reference_model, _, _, _ = deepspeed.initialize(
model=reference_model,
optimizer=ref_optimizer,
args=neox_args,
lr_scheduler=ref_lr_scheduler,
dist_init_required=False,
model_parameters=ref_param_groups,
mpu=mpu if not neox_args.is_pipe_parallel else None,
)
mark_norms_for_sequence_parallel_grad_sync(model, neox_args)
if neox_args.moe_num_experts > 1 and neox_args.moe_type == "megablocks":
# We need to additionally set this flag to ensure DS parallelism properly handles this foreign MoE.
model.has_moe_layers = True
model.total_params = get_total_params(model.module)
print_rank_0(f' > total params: {"{:,}".format(model.total_params)}')
if neox_args.is_pipe_parallel:
model.set_has_attention_mask(True)
if neox_args.curriculum_learning:
curr_scheduler = CurriculumScheduler(neox_args.curriculum_learning)
if iteration is not None and iteration > 0:
curr_scheduler.update_difficulty(iteration)
else:
curr_scheduler = None
model.set_batch_fn(
partial(
get_batch_pipe, neox_args=neox_args, curr_scheduler=curr_scheduler
)
)
else:
model.module.set_batch_fn(
partial(get_batch_sequential, neox_args=neox_args)
)
else:
raise ValueError("Must be using deepspeed to run neox")
if neox_args.load is not None:
neox_args.iteration = load_checkpoint(
neox_args=neox_args,
model=model,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
iteration=iteration,
)
if needs_reference_model:
_ = load_checkpoint(
neox_args=neox_args,
model=reference_model,
optimizer=ref_optimizer,
lr_scheduler=ref_lr_scheduler,
iteration=iteration,
)
reference_model.eval()
print_rank_0(
f"Loading checkpoint and starting from iteration {neox_args.iteration}"
)
else:
neox_args.iteration = 0
# need this for correct lr scheduling resume from ckpt
# but it will not exist if this is being called for inference
if lr_scheduler is not None:
lr_scheduler.optimizer = model.optimizer
return model, optimizer, lr_scheduler, reference_model
def backward_step(neox_args, timers, optimizer, model, loss):
"""Backward step."""
# Backward pass.
timers("backward-backward").start()
if neox_args.deepspeed:
model.backward(loss)
else:
raise ValueError("Must be using deepspeed to run neox")
timers("backward-backward").stop()
if neox_args.deepspeed:
# DeepSpeed backward propagation already addressed all reduce communication.
# Reset the timer to avoid breaking timer logs below.
timers("backward-allreduce").reset()
else:
raise ValueError("Must be using deepspeed to run neox")
def train_step(
neox_args,
timers,
data_iterator,
model,
optimizer,
lr_scheduler,
reference_model=None,
):
"""Single training step."""
# Pipeline parallelism schedules forward/backward/step
if neox_args.is_pipe_parallel:
reduced_loss = train_step_pipe(
neox_args=neox_args, timers=timers, model=model, data_iterator=data_iterator
)
reduce_metrics = reduced_loss
if (
neox_args.memory_profiling
and neox_args.iteration >= neox_args.profile_step_start
and neox_args.iteration <= neox_args.profile_step_stop
and torch.distributed.get_rank() == 0
):
save_snapshot(neox_args)
else:
losses = []
metric_dicts = defaultdict(list)
for _ in range(neox_args.gradient_accumulation_steps):
# Forward model for one step.
timers("forward").start()
loss, metric_dict = forward_step(
neox_args=neox_args,
timers=timers,
data_iterator=data_iterator,
model=model,
is_train=True,
reference_model=reference_model,
)
timers("forward").stop()
losses.append(loss)
for key in metric_dict.keys():
metric_dicts[key].append(metric_dict[key])
# Calculate gradients, reduce across processes, and clip.
if (
neox_args.profile
and neox_args.iteration >= neox_args.profile_step_start
and neox_args.iteration <= neox_args.profile_step_stop
):
torch.cuda.nvtx.range_push(f"Backward pass")
timers("backward").start()
backward_step(
neox_args=neox_args,
timers=timers,
optimizer=optimizer,
model=model,
loss=loss,
)
timers("backward").stop()
if (
neox_args.profile
and neox_args.iteration >= neox_args.profile_step_start
and neox_args.iteration <= neox_args.profile_step_stop
):
torch.cuda.nvtx.range_pop()
# Update parameters.
if (
neox_args.profile
and neox_args.iteration >= neox_args.profile_step_start
and neox_args.iteration <= neox_args.profile_step_stop
):
torch.cuda.nvtx.range_push(f"Optimizer step")
timers("optimizer").start()
if neox_args.deepspeed:
model.step()
else:
raise ValueError("Must be using deepspeed to run neox")
timers("optimizer").stop()
if (
neox_args.profile
and neox_args.iteration >= neox_args.profile_step_start
and neox_args.iteration <= neox_args.profile_step_stop
):
torch.cuda.nvtx.range_pop()
if (
neox_args.profile
and neox_args.iteration >= neox_args.profile_step_start
and neox_args.iteration <= neox_args.profile_step_stop
and torch.distributed.get_rank() == 0
):
save_snapshot(neox_args)
# reduces metrics across machines for logging
reduce_metrics = {
key: reduce_losses(metric_dicts[key]).mean() for key in metric_dicts.keys()
}
reduce_metrics["lm_loss"] = reduce_losses(losses).mean()
if neox_args.precision == "fp16" and model.optimizer.overflow:
skipped_iter = 1
else:
skipped_iter = 0
collect_loss_for_unit_test(reduce_metrics["lm_loss"])
return reduce_metrics, skipped_iter
def train_step_pipe(neox_args, timers, model, data_iterator):
"""Single training step with DeepSpeed's pipeline parallel engine."""
assert neox_args.deepspeed
loss = model.train_batch(data_iter=data_iterator)
loss_dict = {"lm_loss": loss}
# Don't break Megatron's timers because we changed code paths.
for t in [
"forward",
"backward",
"allreduce",
"optimizer",
"batch generator",
"data loader",
]:
timers(t).reset()
return loss_dict
def is_save_iter(neox_args, iteration):
if neox_args.extra_save_iters and iteration in neox_args.extra_save_iters:
return True
if neox_args.checkpoint_factor:
if neox_args.checkpoint_scale == "linear":
assert float(
neox_args.checkpoint_factor
).is_integer(), "checkpoint_factor must be a whole number when using linear checkpoint_scale"
return iteration % neox_args.checkpoint_factor == 0
elif neox_args.checkpoint_scale == "log":
# Check if iteration is a power of checkpoint_factor
assert neox_args.checkpoint_factor > 1
power = 1
while power < iteration + 1:
if int(power) == iteration:
return True
power *= neox_args.checkpoint_factor
return False
return False
def train(
neox_args,
timers,
model,
reference_model,
optimizer,
lr_scheduler,
train_data_iterator,
valid_data_iterator,
):
"""Train the model function."""
# Turn on training mode which enables dropout.
model.train()
# Tracking loss.
total_loss_dict = {}
# Iterations.
iteration = neox_args.iteration
timers("interval time").start()
report_memory_flag = True
# get noise scale logger (if neox_args.log_gradient_noise_scale is True)
noise_scale_logger = get_noise_scale_logger(neox_args)
# to monitor if we've skipped many iterations in a row and trigger an early exit
overflow_monitor = OverflowMonitor(optimizer)
if neox_args.profile:
schedule = torch.profiler.schedule(
wait=neox_args.profile_step_start,
warmup=1,
active=neox_args.profile_step_stop - neox_args.profile_step_start,
)
prof = torch.profiler.profile(
schedule=schedule,
on_trace_ready=torch.profiler.tensorboard_trace_handler(
neox_args.tensorboard_dir
),
record_shapes=True,
profile_memory=True,
with_flops=True,
with_modules=True,
with_stack=True,
)
prof.start()
while iteration < neox_args.train_iters:
if neox_args.profile:
prof.step()
if neox_args.profile and iteration == neox_args.profile_step_start:
torch.cuda.cudart().cudaProfilerStart()
loss_dict, skipped_iter = train_step(
neox_args=neox_args,
timers=timers,
data_iterator=train_data_iterator,
model=model,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
reference_model=reference_model,
)
if neox_args.profile and iteration == neox_args.profile_step_stop:
torch.cuda.cudart().cudaProfilerStop()
prof.stop()
iteration += 1
neox_args.iteration = iteration
if neox_args.precision == "fp16":
overflow_monitor.check(skipped_iter) # check for repeated overflow
if neox_args.log_gradient_noise_scale: # log noise scale if applicable
noise_scale_logger.update()
# get learning rate (if present) - if doing soft prompt tuning + pipe parallel, you
# may have no tunable parameters on a specific rank
if optimizer.param_groups:
lr = optimizer.param_groups[0].get("lr", 0)
else:
lr = 0
# Logging.
report_memory_flag = training_log(
neox_args=neox_args,
timers=timers,
loss_dict=loss_dict,
total_loss_dict=total_loss_dict,
learning_rate=lr,
iteration=iteration,
loss_scale=optimizer.cur_scale if neox_args.precision == "fp16" else None,
report_memory_flag=report_memory_flag,
skipped_iter=skipped_iter,
model=model,
optimizer=optimizer,
noise_scale_logger=noise_scale_logger,
)
# Checkpointing
if neox_args.save and is_save_iter(neox_args, iteration):
save_checkpoint(
neox_args=neox_args,
iteration=iteration,
model=model,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
)
# Evaluation
if (
neox_args.eval_interval
and iteration % neox_args.eval_interval == 0
and neox_args.do_valid
):
prefix = "iteration {}".format(iteration)
evaluate_and_print_results(
neox_args=neox_args,
prefix=prefix,
forward_step_func=forward_step,
data_iterator=valid_data_iterator,
model=model,
iteration=iteration,
verbose=False,
timers=timers,
reference_model=reference_model,
)
if neox_args.exit_interval and iteration % neox_args.exit_interval == 0:
torch.distributed.barrier()
time_str = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
rank = torch.distributed.get_rank()
print_rank_0(
"rank: {} | time: {} | exiting the program at iteration {}".format(
rank, time_str, iteration
)
)
sys.exit()
return iteration
def evaluate(
neox_args,
forward_step_fn,
data_iterator,
model,
verbose=False,
timers=None,
reference_model=None,
):
"""Evaluation.
neox_args: NeoX Arguments
forward_step_fn: function with args `neox_args, timers,
data_iterator & model that will run a forward pass on the model
data_iterator: Iterator that iterates over batches of data. Should return data in the form:
{'text': np.array([tokens], dtype=np.int64)}
where the size of the array is the model's context size + 1
(`get_batch` transforms it into inputs / labels)
"""
# Turn on evaluation mode which disables dropout.
model.eval()
losses = []
metric_dicts = defaultdict(list)
if neox_args.char_level_ppl:
data_iterator = CharCounter(data_iterator, neox_args.tokenizer)
with torch.no_grad():
iteration = 0
while iteration < neox_args.eval_iters:
iteration += 1
if verbose and iteration % neox_args.log_interval == 0:
print_rank_0(
"Evaluating iter {}/{}".format(iteration, neox_args.eval_iters)
)
# although we're not accumulating gradients here, we count one iter as train_batch_size_per_gpu * g.a.s
# to be consistent with deepspeed's pipe parallel engine
# since pipe parallel already takes gradient_accumulation_steps into account - default to 1 here if pipe parallel is true
for _ in range(
1
if neox_args.is_pipe_parallel
else neox_args.gradient_accumulation_steps
):
# Forward evaluation
loss, metric_dict = forward_step_fn(
model=model,
data_iterator=data_iterator,
neox_args=neox_args,
timers=timers,
reference_model=reference_model,
)
losses.append(loss)
for key in metric_dict.keys():
metric_dicts[key].append(metric_dict[key])
# When contiguous memory optimizations are enabled, the buffers
# allocated by the optimizations are deallocated during backward pass
# in the absence of backward pass the buffers should be reset after each
# forward pass
if neox_args.deepspeed and neox_args.deepspeed_activation_checkpointing:
deepspeed.checkpointing.reset()
# reduces losses across processes for logging & run eval harness tasks
eval_results = {"lm_loss": reduce_losses(losses).mean().item()}
for key in metric_dicts.keys():
eval_results[key] = reduce_losses(metric_dicts[key]).mean().item()
eval_results["lm_loss_ppl"] = math.exp(eval_results["lm_loss"])
if neox_args.char_level_ppl:
# calculate character level perplexity, if specified
# if neox_args.char_level_ppl:
# unwrap the data_iterator
tokens_per_char = data_iterator.tokens_per_char()
print_rank_0(f"Counting chars took {data_iterator.total_time} seconds")
data_iterator = data_iterator.data_iterator
eval_results["lm_loss_char_lvl_ppl"] = math.exp(
eval_results["lm_loss"] * tokens_per_char
)
if neox_args.eval_tasks:
from eval_tasks import run_eval_harness
eval_results.update(
run_eval_harness(
model, forward_step_fn, neox_args, eval_tasks=neox_args.eval_tasks
).get("results")
)
# Move model back to the train mode.
model.train()
return eval_results
def collect_loss_for_unit_test(lm_ss):
# Logic moved to separate function to allow tracking in unit tests with unittest.mock.patch
pass
def evaluate_and_print_results(
neox_args,
prefix,
forward_step_func,
data_iterator,
model,
iteration,
verbose=False,
timers=None,
chart_name="validation",
reference_model=None,
):
"""Helper function to evaluate and dump results on screen."""
total_loss_dict = evaluate(
neox_args=neox_args,
forward_step_fn=forward_step_func,
data_iterator=data_iterator,
model=model,
verbose=verbose,
timers=timers,
reference_model=reference_model,
)
string = f" {chart_name} results at {prefix} | "
for k, v in total_loss_dict.items():
if isinstance(v, dict):
if neox_args.eval_tasks and "results" in v:
v = v["results"]
print(v)
for k2, v2 in v.items():
k3 = "_".join([k, k2])
string += f"{k3} value: {v2:.6E} | "
tb_wandb_log(
f"{chart_name}/{k3}",
v2,
iteration,
use_wandb=neox_args.use_wandb,
tensorboard_writer=neox_args.tensorboard_writer,
comet_experiment=neox_args.comet_experiment,
)
else:
string += f"{k} value: {v:.6E} | "
tb_wandb_log(
f"{chart_name}/{k}",
v,
iteration,
use_wandb=neox_args.use_wandb,
tensorboard_writer=neox_args.tensorboard_writer,
comet_experiment=neox_args.comet_experiment,
)
length = len(string) + 1
print_rank_0("-" * length)
print_rank_0(string)
print_rank_0("-" * length)
def save_snapshot(neox_args):
assert (
neox_args.memory_profiling_path is not None
), "Must pass memory_profiling_path config arg to use profiling"
snapshot = torch.cuda.memory._snapshot()
snapshot_path = os.path.join(neox_args.memory_profiling_path)
if not os.path.exists(snapshot_path):
os.makedirs(snapshot_path)
with open(os.path.join(snapshot_path, "mem_snapshot.pickle"), "wb") as f:
dump(snapshot, f)
|