File size: 11,907 Bytes
d90b3a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
import torch
from convert_neox_to_hf import load_partitions, get_key, get_state
from mamba_ssm.models.config_mamba import MambaConfig
from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel
import argparse
from typing import Literal
import yaml
from tqdm import tqdm
import os
import sys
sys.path.append(
os.path.abspath(
os.path.join(os.path.dirname(__file__), os.path.pardir, os.path.pardir)
)
)
from megatron.tokenizer import build_tokenizer
"""
Conversion utility for converting a Mamba model
trained in GPT-NeoX into the mamba_ssm package ckpt format.
"""
ARCH = {
"COLUMN_PARALLEL_LINEAR_KEYS": {
# these require concat across dim=0
"mixer.in_proj.weight": "mixer.in_proj.weight",
# "mixer.in_proj.bias": "mixer.in_proj.bias",
"mixer.A_log": "mixer.A_log",
"mixer.D": "mixer.D",
"mixer.conv1d.weight": "mixer.conv1d.weight",
"mixer.conv1d.bias": "mixer.conv1d.bias",
"mixer.dt_proj.weight": "mixer.dt_proj.weight",
"mixer.dt_proj.bias": "mixer.dt_proj.bias",
},
"ROW_PARALLEL_LINEAR_KEYS": {
# these require concat across dim=1
"mixer.out_proj.weight": "mixer.out_proj.weight",
"mixer.x_proj.weight": "mixer.x_proj.weight",
},
"ROW_PARALLEL_BIAS_KEYS": {
# these require summing across ranks
# "mixer.x_proj.bias": "mixer.x_proj.bias",
# "mixer.out_proj.bias": "mixer.out_proj.bias",
},
"NORM_KEYS": {
"norm.scale": "norm.weight",
# "norm.bias": "norm.bias",
},
"FINAL_NORM_KEYS": {
"norm.scale": "weight",
# "norm.bias": "bias",
},
}
def create_config(neox_config):
class TokenizerArgs:
# kinda hacky.
# this is to get something with the same interface as is used in build_tokenizer()
# without diving into loading a neox_args object or using argparse etc.
def __init__(self, neox_config):
self.make_vocab_size_divisible_by = get_key(
neox_config, "make-vocab-size-divisible-by", default=128
)
self.model_parallel_size = get_key(neox_config, "model-parallel-size")
self.vocab_file = get_key(neox_config, "vocab-file")
self.merge_file = get_key(neox_config, "merge-file")
self.tokenizer_type = get_key(neox_config, "tokenizer-type")
self.rank = 0
args = TokenizerArgs(neox_config)
tokenizer = build_tokenizer(args)
try: # GPT2TokenizerFast raises NotImplementedError
pad_token = tokenizer.pad
except:
pad_token = (
1 # pad defaulting to 1. follows convention from GPT-NeoX-20b tokenizer
)
norm_type = get_key(neox_config, "norm", "layernorm")
if norm_type == "rmsnorm":
use_rms_norm = True
else:
assert (
norm_type == "layernorm"
), "only layernorm or rmsnorm supported by mamba_ssm!"
use_rms_norm = False
return MambaConfig(
d_model=get_key(neox_config, "hidden_size"),
n_layer=get_key(neox_config, "num_layers"),
vocab_size=args.padded_vocab_size,
rms_norm=use_rms_norm,
residual_in_fp32=False,
fused_add_norm=True,
# shouldn't really matter? we didn't train with it but should be equiv.
# it's faster though
# pad_vocab_size_multiple_of=get_key(neox_config, "make_vocab_size_divisible_by", 128),
tie_embeddings=not get_key(
neox_config, "no_weight_tying", False
), # requires newer mamba_ssm>=1.2.0.post1
)
def convert(
input_checkpoint_path,
loaded_config,
output_checkpoint_path,
sequential: bool = True,
precision: Literal["auto", "fp16", "bf16", "fp32"] = "auto",
):
mamba_config = create_config(loaded_config)
if precision == "auto":
print("Auto-detecting precision to save model into...")
# save model in FP16 if Deepspeed fp16 was used in config, else 32 bit
fp16 = get_key(loaded_config, "fp16")
if fp16:
try:
# current behavior is to pass "fp16": {"enabled": true}, when using upstream Deepspeed
if fp16["enabled"]:
dtype = torch.float16
print("Saving weights in fp16 precision...")
except:
try:
# attempt to access bf16 dict in yaml file, if fp16 not enabled
bf16 = get_key(loaded_config, "bf16")
if bf16:
dtype = torch.bfloat16
print("Saving weights in bf16 precision...")
except:
dtype = torch.float
print(
"Model not trained in fp16 / bf16 mixed precision, saving weights in fp32..."
)
else:
name_to_dtype = {
"bf16": torch.bfloat16,
"fp16": torch.float16,
"fp32": torch.float,
}
print(f"Saving model into specified {precision} precision...")
dtype = name_to_dtype[precision]
mamba_model = MambaLMHeadModel(
config=mamba_config,
device="cuda" if torch.cuda.is_available() else "cpu",
dtype=torch.float,
) # dtype)
mp_partitions = get_key(loaded_config, "model-parallel-size")
# Sequential saves all model states from an MP rank in one file.
# so we only load the MP ranks only once and index into them with get_state().
# for the pipeline-parallel case (pipeline-parallel-size >= 1),
# we must load the correct layer's states at each step.
# (this does mean that less memory is required for PP conversion.)
loaded_tp_ranks = load_partitions(
input_checkpoint_path, mp_partitions, layer_idx=0, sequential=sequential
)
mamba_model.backbone.embedding.load_state_dict(
{
"weight": torch.cat(
get_state(
loaded_tp_ranks,
"word_embeddings.weight",
layer_idx=0,
sequential=sequential,
),
dim=0,
)
}
)
for layer_i in tqdm(range(get_key(loaded_config, "num-layers"))):
layer = mamba_model.backbone.layers[layer_i]
if not sequential:
# in the non-sequential case, must load from each layer individually.
# use layer index + 2 bc of embed layer and a dummy _pre_transformer_block, which are "layers 0 and 1"
loaded_tp_ranks = load_partitions(
input_checkpoint_path,
mp_partitions,
layer_idx=layer_i + 2,
sequential=sequential,
)
state_dict = {}
for key, hf_key in ARCH["ROW_PARALLEL_LINEAR_KEYS"].items(): # ROW_PARALLEL
state_dict[hf_key] = torch.cat(
get_state(
loaded_tp_ranks, key, layer_idx=layer_i + 2, sequential=sequential
),
dim=1,
)
# average layernorm stats over mp ranks
for key, hf_key in ARCH["NORM_KEYS"].items():
state_dict[hf_key] = sum(
get_state(
loaded_tp_ranks, key, layer_idx=layer_i + 2, sequential=sequential
)
) / len(loaded_tp_ranks)
# LinearWithTPMerge
for key, hf_key in ARCH["COLUMN_PARALLEL_LINEAR_KEYS"].items():
state_dict[hf_key] = torch.cat(
get_state(
loaded_tp_ranks, key, layer_idx=layer_i + 2, sequential=sequential
),
dim=0,
)
# LinearWithTPSplitBias
for key, hf_key in ARCH["ROW_PARALLEL_BIAS_KEYS"].items():
state_dict[hf_key] = sum(
get_state(
loaded_tp_ranks, key, layer_idx=layer_i + 2, sequential=sequential
)
)
layer.load_state_dict(state_dict)
if not sequential:
loaded_tp_ranks = load_partitions(
input_checkpoint_path,
mp_partitions,
get_key(loaded_config, "num-layers") + 3,
sequential=sequential,
)
norm_state_dict = {}
for key, hf_key in ARCH["FINAL_NORM_KEYS"].items():
norm_state_dict[hf_key] = sum(
get_state(
loaded_tp_ranks,
key,
layer_idx=get_key(loaded_config, "num-layers") + 3,
sequential=sequential,
)
) / len(loaded_tp_ranks)
final_layer_norm = mamba_model.backbone.norm_f
final_layer_norm.load_state_dict(norm_state_dict)
if not sequential:
loaded_tp_ranks = load_partitions(
input_checkpoint_path,
mp_partitions,
get_key(loaded_config, "num-layers") + 4,
sequential=sequential,
)
lm_head = mamba_model.lm_head
lm_head.load_state_dict(
{
"weight": torch.cat(
get_state(
loaded_tp_ranks,
"final_linear.weight",
layer_idx=get_key(loaded_config, "num-layers") + 4,
sequential=sequential,
),
dim=0,
),
}
)
del loaded_tp_ranks
return mamba_model
def main(input_args=None, overwrite_values=None):
parser = argparse.ArgumentParser(
description="Merge MP partitions and convert to HF Model."
)
parser.add_argument(
"--input_dir",
type=str,
help="Path to NeoX checkpoint, e.g. /path/to/model/global_step143000",
)
parser.add_argument(
"--config_file",
type=str,
help="Path to config file for the input NeoX checkpoint.",
)
parser.add_argument(
"--output_dir",
type=str,
help="Output dir, where to save the HF Model, tokenizer, and configs",
)
parser.add_argument(
"--precision",
type=str,
default="auto",
help="What precision to save the model into. Defaults to auto, which auto-detects which 16-bit dtype to save into, or falls back to fp32.",
)
parser.add_argument(
"--no_save_tokenizer",
action="store_true",
help="Whether to skip saving the tokenizer alongside a model.",
)
args = parser.parse_args(input_args)
# validate arguments
assert args.precision in [
"auto",
"fp16",
"bf16",
"fp32",
], f"expected --precision to be one of 'auto', 'fp16', 'bf16', 'fp32' but got '{args.precision}' !"
with open(args.config_file) as f:
loaded_config = yaml.full_load(f)
if overwrite_values:
loaded_config.update(overwrite_values)
# Determine the checkpoint format of the model.
# DeepSpeed saves models wrapped in a PipelineModule differently from those not.
# PipelineModule models are saved as per-layer state dicts per TP shard,
# while Sequential model state dicts are saved all together in one mp_rank_xx_model_states.pt
# file per tensor/model parallel shard.
pipeline_world_size = get_key(loaded_config, "pipe-parallel-size", 1)
if pipeline_world_size == 0:
sequential = True
print(
f"Detected 'pipe-parallel-size' of {pipeline_world_size}, assuming model is saved as Sequential..."
)
else:
sequential = False
print(
f"Detected 'pipe-parallel-size' of {pipeline_world_size}, assuming model is saved as PipelineModule..."
)
model = convert(
args.input_dir,
loaded_config,
args.output_dir,
sequential=sequential,
precision=args.precision,
)
model.save_pretrained(args.output_dir)
if __name__ == "__main__":
main()
|