File size: 9,451 Bytes
d90b3a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
# Copyright (c) 2024, EleutherAI
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os
import torch
import yaml
import shutil
from tqdm import auto as tqdm_lib


VOCAB_SIZE = 50432
IGNORED_MODEL_STATE_KEYS = [
    "optimizer",
    "random_rng_state",
    "np_rng_state",
    "torch_rng_state",
    "cuda_rng_state",
    "rng_tracker_states",
]


def modify_config(input_config_path, output_config_path, output_dir):
    with open(input_config_path) as f:
        loaded_config = yaml.full_load(f)

    # replace model/pipeline parallel
    loaded_config["model_parallel_size"] = 1
    loaded_config["pipe_parallel_size"] = 1

    # replace load / save directories:
    loaded_config["load"] = output_dir
    loaded_config["save"] = output_dir

    # replace some other paths
    loaded_config["vocab_file"] = os.path.join(output_dir, "20B_tokenizer.json")
    loaded_config["log_dir"] = "./logs"

    # we need to make sure the resulting vocab size is correct
    # do this by modifying the 'make_vocab_size_divisible_by' argument to be
    # orig * (orig_mp / mp_out)
    loaded_config["make_vocab_size_divisible_by"] = VOCAB_SIZE

    # remove zero optimizer
    loaded_config["zero_optimization"]["stage"] = 0

    with open(output_config_path, "w") as f:
        yaml.dump(loaded_config, f)


def modify_model_states(input_model_state_path, output_model_state_path):
    model_state = torch.load(input_model_state_path)
    for key in IGNORED_MODEL_STATE_KEYS:
        del model_state[key]
    model_state["mp_world_size"] = 1
    model_state["dp_world_size"] = 1  # could make this configurable?
    model_state["args"]["model_parallel_size"] = 1
    model_state["args"]["make_vocab_size_divisible_by"] = VOCAB_SIZE
    torch.save(model_state, output_model_state_path)


def merge_model_weights(input_checkpoint_path, output_checkpoint_path):
    pbar = tqdm_lib.tqdm(total=47)

    # Load transformer layers
    for layer_i in range(44):
        pbar.set_description(f"Merging layer {layer_i}")
        filename_tp1 = f"layer_{layer_i + 2:02d}-model_00-model_states.pt"
        filename_tp2 = f"layer_{layer_i + 2:02d}-model_01-model_states.pt"
        loaded_tp1 = torch.load(os.path.join(input_checkpoint_path, filename_tp1))
        loaded_tp2 = torch.load(os.path.join(input_checkpoint_path, filename_tp2))
        # noinspection PyDictCreation
        merged = {}

        # RowParallelLinear
        merged["mlp.dense_4h_to_h.weight"] = torch.cat(
            [
                loaded_tp1["mlp.dense_4h_to_h.weight"],
                loaded_tp2["mlp.dense_4h_to_h.weight"],
            ],
            dim=1,
        )
        merged["attention.dense.weight"] = torch.cat(
            [
                loaded_tp1["attention.dense.weight"],
                loaded_tp2["attention.dense.weight"],
            ],
            dim=1,
        )
        merged["mlp.dense_4h_to_h.bias"] = (
            loaded_tp1["mlp.dense_4h_to_h.bias"] + loaded_tp2["mlp.dense_4h_to_h.bias"]
        )
        merged["attention.dense.bias"] = (
            loaded_tp1["attention.dense.bias"] + loaded_tp2["attention.dense.bias"]
        )

        # Layer Norms
        merged["input_layernorm.weight"] = (
            loaded_tp1["input_layernorm.weight"] + loaded_tp2["input_layernorm.weight"]
        ) / 2
        merged["input_layernorm.bias"] = (
            loaded_tp1["input_layernorm.bias"] + loaded_tp2["input_layernorm.bias"]
        ) / 2
        merged["post_attention_layernorm.weight"] = (
            loaded_tp1["post_attention_layernorm.weight"]
            + loaded_tp2["post_attention_layernorm.weight"]
        ) / 2
        merged["post_attention_layernorm.bias"] = (
            loaded_tp1["post_attention_layernorm.bias"]
            + loaded_tp2["post_attention_layernorm.bias"]
        ) / 2

        # ColumnParallelLinear
        merged["mlp.dense_h_to_4h.weight"] = torch.cat(
            [
                loaded_tp1["mlp.dense_h_to_4h.weight"],
                loaded_tp2["mlp.dense_h_to_4h.weight"],
            ],
            dim=0,
        )
        merged["mlp.dense_h_to_4h.bias"] = torch.cat(
            [
                loaded_tp1["mlp.dense_h_to_4h.bias"],
                loaded_tp2["mlp.dense_h_to_4h.bias"],
            ],
            dim=0,
        )
        merged["attention.query_key_value.weight"] = torch.cat(
            [
                loaded_tp1["attention.query_key_value.weight"],
                loaded_tp2["attention.query_key_value.weight"],
            ],
            dim=0,
        )
        merged["attention.query_key_value.bias"] = torch.cat(
            [
                loaded_tp1["attention.query_key_value.bias"],
                loaded_tp2["attention.query_key_value.bias"],
            ],
            dim=0,
        )

        # Just take one
        merged["attention.rotary_emb.inv_freq"] = loaded_tp1[
            "attention.rotary_emb.inv_freq"
        ]

        torch.save(merged, os.path.join(output_checkpoint_path, filename_tp1))
        del loaded_tp1
        del loaded_tp2
        pbar.update(1)

    # Load input embedding
    pbar.set_description(f"Merging input embedding")
    loaded_tp1 = torch.load(
        os.path.join(input_checkpoint_path, "layer_00-model_00-model_states.pt")
    )
    loaded_tp2 = torch.load(
        os.path.join(input_checkpoint_path, "layer_00-model_01-model_states.pt")
    )
    merged = {
        "word_embeddings.weight": torch.cat(
            [
                loaded_tp1["word_embeddings.weight"],
                loaded_tp2["word_embeddings.weight"],
            ],
            dim=0,
        )
    }
    torch.save(
        merged,
        os.path.join(output_checkpoint_path, "layer_00-model_00-model_states.pt"),
    )
    del loaded_tp1
    del loaded_tp2
    pbar.update(1)

    # Load final layer norm
    pbar.set_description(f"Merging final layer norm")
    loaded_tp1 = torch.load(
        os.path.join(input_checkpoint_path, "layer_47-model_00-model_states.pt")
    )
    loaded_tp2 = torch.load(
        os.path.join(input_checkpoint_path, "layer_47-model_01-model_states.pt")
    )
    merged = {
        "norm.weight": (loaded_tp1["norm.weight"] + loaded_tp2["norm.weight"]) / 2,
        "norm.bias": (loaded_tp1["norm.bias"] + loaded_tp2["norm.bias"]) / 2,
    }
    torch.save(
        merged,
        os.path.join(output_checkpoint_path, "layer_47-model_00-model_states.pt"),
    )
    del loaded_tp1
    del loaded_tp2
    pbar.update(1)

    # Load output embedding
    pbar.set_description(f"Merging output embedding")
    loaded_tp1 = torch.load(
        os.path.join(input_checkpoint_path, "layer_48-model_00-model_states.pt")
    )
    loaded_tp2 = torch.load(
        os.path.join(input_checkpoint_path, "layer_48-model_01-model_states.pt")
    )
    merged = {
        "final_linear.weight": torch.cat(
            [
                loaded_tp1["final_linear.weight"],
                loaded_tp2["final_linear.weight"],
            ],
            dim=0,
        ),
    }
    torch.save(
        merged,
        os.path.join(output_checkpoint_path, "layer_48-model_00-model_states.pt"),
    )
    del loaded_tp1
    del loaded_tp2
    pbar.update(1)
    pbar.set_description("Done.")


def merge(input_dir, output_dir):
    input_checkpoint_path = os.path.join(input_dir, "global_step150000")
    output_checkpoint_path = os.path.join(output_dir, "global_step150000")
    os.makedirs(output_checkpoint_path, exist_ok=True)
    os.makedirs(os.path.join(output_dir, "configs"), exist_ok=True)
    for i in range(8):
        modify_model_states(
            input_model_state_path=os.path.join(
                input_checkpoint_path, f"mp_rank_{i:02d}_model_states.pt"
            ),
            output_model_state_path=os.path.join(
                output_checkpoint_path, f"mp_rank_{i:02d}_model_states.pt"
            ),
        )
    modify_config(
        input_config_path=os.path.join(input_dir, "configs", "20B.yml"),
        output_config_path=os.path.join(output_dir, "configs", "20B.yml"),
        output_dir=output_dir,
    )
    merge_model_weights(
        input_checkpoint_path=input_checkpoint_path,
        output_checkpoint_path=output_checkpoint_path,
    )
    shutil.copyfile(
        os.path.join(input_dir, "20B_tokenizer.json"),
        os.path.join(output_dir, "20B_tokenizer.json"),
    )
    with open(os.path.join(output_dir, "latest"), "w") as f:
        f.write("global_step150000")


def main():
    parser = argparse.ArgumentParser(description="Merge 20B checkpoint.")
    parser.add_argument(
        "--input_dir",
        type=str,
        help='Checkpoint dir, which should contain (e.g. a folder named "global_step150000")',
    )
    parser.add_argument(
        "--output_dir", type=str, help="Output dir, to save the 1-GPU weights configs"
    )
    args = parser.parse_args()
    merge(args.input_dir, args.output_dir)


if __name__ == "__main__":
    main()