File size: 5,224 Bytes
d90b3a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# Copyright (c) 2024, EleutherAI
# This file is based on code by the authors denoted below and has been modified from its original version.
#
# Copyright (c) 2024, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Learning rate decay functions."""

import math

from megatron import print_rank_0


class AnnealingLR(object):
    """Anneals the learning rate."""

    def __init__(
        self,
        optimizer,
        start_lr,
        warmup_iter,
        total_iters,
        decay_style,
        last_iter,
        min_lr=0.0,
        use_checkpoint_lr_scheduler=True,
        override_lr_scheduler=False,
        use_mup=False,
    ):

        # Class values.
        self.optimizer = optimizer
        self.start_lr = start_lr
        self.min_lr = min_lr
        self.warmup_iter = warmup_iter
        self.num_iters = last_iter
        self.end_iter = total_iters
        assert self.end_iter > 0
        self.decay_style = decay_style
        self.override_lr_scheduler = override_lr_scheduler
        self.use_checkpoint_lr_scheduler = use_checkpoint_lr_scheduler
        self.use_mup = use_mup
        if self.override_lr_scheduler:
            assert not self.use_checkpoint_lr_scheduler, (
                "both override and " "use-checkpoint are set."
            )
        # Set the learning rate
        self.step(self.num_iters)

        print_rank_0("> learning rate decay style: {}".format(self.decay_style))

    def get_lr(self):
        """Learning rate decay functions from:
        https://openreview.net/pdf?id=BJYwwY9ll pg. 4"""

        num_iters_ = self.num_iters
        # Warmup.
        if self.warmup_iter > 0 and self.num_iters <= self.warmup_iter:
            return float(self.start_lr) * num_iters_ / self.warmup_iter

        num_iters_ = num_iters_ - self.warmup_iter
        if self.decay_style == "linear":
            end_iter_ = self.end_iter - self.warmup_iter
            lr = self.start_lr * (end_iter_ - num_iters_) / end_iter_
        elif self.decay_style == "cosine":
            end_iter_ = self.end_iter - self.warmup_iter
            lr = self.min_lr + (
                (self.start_lr - self.min_lr)
                / 2.0
                * (math.cos(math.pi * num_iters_ / end_iter_) + 1)
            )
        elif self.decay_style == "exponential":
            # exp(-0.693) = 1/2
            end_iter = self.end_iter - self.warmup_iter
            lr = self.start_lr * math.exp(-0.693 * num_iters_ / end_iter)
        else:
            lr = self.start_lr
        return max(lr, self.min_lr)

    def step(self, step_num=None):
        """Set lr for all parameters groups."""
        if step_num is None:
            step_num = self.num_iters + 1
        self.num_iters = step_num
        new_lr = self.get_lr()
        for group in self.optimizer.param_groups:
            if self.use_mup and "width_mult" in group:
                group["lr"] = new_lr / group["width_mult"]
            else:
                group["lr"] = new_lr

    def state_dict(self):
        state_dict = {
            "start_lr": self.start_lr,
            "warmup_iter": self.warmup_iter,
            "num_iters": self.num_iters,
            "decay_style": self.decay_style,
            "end_iter": self.end_iter,
            "min_lr": self.min_lr,
        }
        return state_dict

    def _check_and_set(self, cls_value, sd_value, name):
        """Auxiliary function for checking the values in the checkpoint and
        setting them."""
        if self.override_lr_scheduler:
            print_rank_0(" > overriding {} value to {}".format(name, cls_value))
            return cls_value

        if not self.use_checkpoint_lr_scheduler:
            assert cls_value == sd_value, (
                "AnnealingLR: class input value"
                "and checkpoint values for {} do not match".format(name)
            )
        print_rank_0(" > using checkpoint value {} for {}".format(sd_value, name))
        return sd_value

    def load_state_dict(self, sd):

        self.start_lr = self._check_and_set(
            self.start_lr, sd["start_lr"], "learning rate"
        )
        self.min_lr = self._check_and_set(
            self.min_lr, sd["min_lr"], "minimum learning rate"
        )
        self.warmup_iter = self._check_and_set(
            self.warmup_iter, sd["warmup_iter"], "warmup iterations"
        )
        self.end_iter = self._check_and_set(
            self.end_iter, sd["end_iter"], "total number of iterations"
        )
        self.decay_style = self._check_and_set(
            self.decay_style, sd["decay_style"], "decay style"
        )

        self.num_iters = sd["num_iters"]
        self.step(self.num_iters)