File size: 17,617 Bytes
d90b3a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 |
# Copyright (c) 2024, EleutherAI
# This file is based on code by the authors denoted below and has been modified from its original version.
#
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""General utilities."""
import os
import sys
import re
import time
import socket
from typing import Dict, List
import requests
try:
import wandb
except ModuleNotFoundError:
pass
import torch
from deepspeed.launcher.runner import fetch_hostfile, parse_inclusion_exclusion
from deepspeed.runtime.bf16_optimizer import BF16_Optimizer
from megatron import print_rank_0
from megatron import mpu
from collections import deque
def reduce_losses(losses):
"""Reduce a tensor of losses across all GPUs."""
reduced_losses = torch.cat([loss.clone().detach().view(1) for loss in losses])
torch.distributed.all_reduce(reduced_losses)
reduced_losses = reduced_losses / torch.distributed.get_world_size()
return reduced_losses
def report_memory(name):
"""Simple GPU memory report."""
mega_bytes = 1024.0 * 1024.0
string = name + " memory (MB)"
string += " | allocated: {}".format(torch.cuda.memory_allocated() / mega_bytes)
string += " | max allocated: {}".format(
torch.cuda.max_memory_allocated() / mega_bytes
)
string += " | reserved: {}".format(torch.cuda.memory_reserved() / mega_bytes)
string += " | max reserved: {}".format(
torch.cuda.max_memory_reserved() / mega_bytes
)
print_rank_0(string)
def get_attn_mask(seq_length, device, sliding_window_width):
"""
Get triangular attention mask for a given sequence length / device.
"""
# lower triangular attention mask
mask = torch.tril(torch.ones((1, seq_length, seq_length), device=device)).view(
1, 1, seq_length, seq_length
)
# get rid of lower diagonals than the sliding window width, if a value was provided
if sliding_window_width is not None:
mask = torch.triu(mask, diagonal=-sliding_window_width)
# convert to binary
return mask < 0.5
def get_ltor_masks_and_position_ids(
data,
eod_token,
eod_mask_loss=False,
sliding_window_width=None,
):
"""Build masks and position id for left to right model."""
# Extract batch size and sequence length.
batch_size, seq_length = data.size()
# Attention mask (lower triangular).
attention_mask = get_attn_mask(
seq_length=seq_length,
device=data.device,
sliding_window_width=sliding_window_width,
)
# Loss mask.
loss_mask = torch.ones(data.size(), dtype=torch.float, device=data.device)
if eod_mask_loss:
loss_mask[data == eod_token] = 0.0
# Position ids.
position_ids = torch.arange(seq_length, dtype=torch.long, device=data.device)
position_ids = position_ids.unsqueeze(0).expand_as(data)
return attention_mask, loss_mask, position_ids
def local_rank():
"""Local rank of process"""
local_rank = os.environ.get("LOCAL_RANK")
if local_rank is None:
local_rank = os.environ.get("SLURM_LOCALID")
if local_rank is None:
print(
"utils.local_rank() environment variable LOCAL_RANK not set, defaulting to 0",
flush=True,
)
local_rank = 0
return int(local_rank)
def is_bnb_available():
"""True if bitsandbytes optimizers are available"""
return importlib.util.find_spec("bitsandbytes") is not None
def is_local_main():
"""True if is the local main process"""
return local_rank() == 0
def is_mp_rank_0():
"""True if mp rank == 0"""
return mpu.get_model_parallel_rank() == 0
def get_wandb_api_key(neox_args):
"""Get Weights and Biases API key from ENV or .netrc file. Otherwise return None"""
if "WANDB_LOCAL" in os.environ:
return "LOCAL"
if "WANDB_API_KEY" in os.environ:
return os.environ["WANDB_API_KEY"]
wandb_token = requests.utils.get_netrc_auth(neox_args.wandb_host)
if wandb_token is not None:
return wandb_token[1]
def init_wandb(neox_args):
# Wandb. (one worker per machine)
if neox_args.use_wandb == False:
return
if not neox_args.wandb_init_all_ranks:
use_wandb = is_local_main() and (
get_wandb_api_key(neox_args=neox_args) is not None
)
neox_args.update_value("use_wandb", use_wandb)
if neox_args.use_wandb:
group_name = neox_args.wandb_group
name = f"{socket.gethostname()}-{local_rank()}" if group_name else None
try:
wandb.init(
project=neox_args.wandb_project,
group=group_name,
name=name,
save_code=False,
force=False,
entity=neox_args.wandb_team,
)
except wandb.UsageError as e:
neox_args.update_value("use_wandb", False)
print(e)
print(
"Skipping wandb. Execute `wandb login` on local or main node machine to enable.",
flush=True,
)
wandb.config.update(neox_args.all_config)
def obtain_resource_pool(
hostfile_path, include_arg, exclude_arg
) -> Dict[str, List[int]]:
"""
Get dict of `resource_pool[hostname] = [list of GPU ranks]` using hostfile, include and exclude args.
Modified from: `deepspeed.launcher.runner.main`
"""
resource_pool = fetch_hostfile(hostfile_path)
if not resource_pool:
resource_pool = {}
device_count = torch.cuda.device_count()
if device_count == 0:
raise RuntimeError("Unable to proceed, no GPU resources available")
resource_pool["localhost"] = device_count
active_resources = parse_inclusion_exclusion(
resource_pool, include_arg, exclude_arg
)
return active_resources
def natural_sort(l):
convert = lambda text: int(text) if text.isdigit() else text.lower()
alphanum_key = lambda key: [convert(c) for c in re.split("([0-9]+)", key)]
return sorted(l, key=alphanum_key)
def ddb(rank=0):
"""
Distributed Debugger that will insert a py debugger on rank `rank` and
pause all other distributed processes until debugging is complete.
:param rank:
"""
if torch.distributed.get_rank() == rank:
from pdb import Pdb
pdb = Pdb(skip=["torch.distributed.*"])
pdb.set_trace(sys._getframe().f_back)
torch.distributed.barrier()
class Timer:
"""Timer."""
def __init__(self, name):
self.name_ = name
self.elapsed_ = 0.0
self.started_ = False
self.start_time = time.time()
def start(self):
"""Start the timer."""
assert not self.started_, "timer has already been started"
torch.cuda.synchronize()
self.start_time = time.time()
self.started_ = True
def stop(self):
"""Stop the timer."""
assert self.started_, "timer is not started"
torch.cuda.synchronize()
self.elapsed_ += time.time() - self.start_time
self.started_ = False
def reset(self):
"""Reset timer."""
self.elapsed_ = 0.0
self.started_ = False
def elapsed(self, reset=True):
"""Calculate the elapsed time."""
started_ = self.started_
# If the timing in progress, end it first.
if self.started_:
self.stop()
# Get the elapsed time.
elapsed_ = self.elapsed_
# Reset the elapsed time
if reset:
self.reset()
# If timing was in progress, set it back.
if started_:
self.start()
return elapsed_
class Timers:
"""Group of timers."""
def __init__(self, use_wandb, tensorboard_writer, comet_experiment):
self.timers = {}
self.use_wandb = use_wandb
self.tensorboard_writer = tensorboard_writer
self.comet_experiment = comet_experiment
def __call__(self, name):
if name not in self.timers:
self.timers[name] = Timer(name)
return self.timers[name]
def write(self, names, iteration, normalizer=1.0, reset=False):
"""Write timers to a tensorboard writer"""
# currently when using add_scalars,
# torch.utils.add_scalars makes each timer its own run, which
# pollutes the runs list, so we just add each as a scalar
assert normalizer > 0.0
for name in names:
value = self.timers[name].elapsed(reset=reset) / normalizer
if self.tensorboard_writer:
self.tensorboard_writer.add_scalar(f"timers/{name}", value, iteration)
if self.use_wandb:
wandb.log({f"timers/{name}": value}, step=iteration)
if self.comet_experiment:
self.comet_experiment.__internal_api__log_metric__(
f"timers/{name}",
value,
framework="gpt-neox",
step=iteration,
)
def log(self, names, normalizer=1.0, reset=True):
"""Log a group of timers."""
assert normalizer > 0.0
string = "time (ms)"
for name in names:
elapsed_time = self.timers[name].elapsed(reset=reset) * 1000.0 / normalizer
string += " | {}: {:.2f}".format(name, elapsed_time)
if torch.distributed.is_initialized():
if torch.distributed.get_rank() == 0:
print(string, flush=True)
else:
print(string, flush=True)
def expand_attention_types(attention_config, num_layers):
"""
Expands an `attention_config` list in the following format:
[
[['attention_type_1', ..., `attention_type_n`], 12]
]
to a flattened list of length `num_layers`.
:param params_list:
:return:
"""
# if only strings are found in the config, we assume it's already expanded
if all([isinstance(i, str) for i in attention_config]):
return attention_config
newlist = []
for item in attention_config:
# instead of specifying a number - we can specify 'all' to extend this pattern across all layers
if item[1] == "all":
assert num_layers % len(item[0]) == 0, (
f"Number of layers ({num_layers}) is not divisible by the length "
f"of pattern: {item[0]}"
)
return item[0] * (num_layers // len(item[0]))
for _ in range(item[1]):
newlist.extend(item[0])
return newlist
class OverflowMonitor:
"""
Checks if the past n iterations have been skipped due to overflow, and exits
training if that happens.
"""
def __init__(self, optimizer, n=50):
self.optimizer = optimizer
self.n = n
self.history = deque(maxlen=n)
self.bf16 = isinstance(optimizer, BF16_Optimizer)
def check(self, skipped):
if self.bf16:
return
self.history.append(skipped)
if (
self.optimizer.overflow
and len(self.history) == self.n
and all(self.history)
):
raise Exception(
f"Skipped {self.n} iterations in a row due to Overflow - Exiting training."
)
def get_noise_scale_logger(neox_args):
if neox_args.log_gradient_noise_scale:
if neox_args.zero_stage >= 1:
raise NotImplementedError(
"Gradient Noise Scale logging does not work with zero stage 2+, as the "
"gradients are distributed across ranks."
)
noise_scale_logger = GradientNoiseScale(
model=model,
batch_size_small=neox_args.train_batch_size,
n_batches=neox_args.gradient_noise_scale_n_batches,
cpu_offload=neox_args.gradient_noise_scale_cpu_offload,
neox_args=neox_args,
mpu=mpu,
)
else:
noise_scale_logger = None
return noise_scale_logger
def get_total_params(model):
# Print number of parameters.
if mpu.get_data_parallel_rank() == 0:
params = sum([p.nelement() for p in model.parameters()])
print(
" > number of parameters on model parallel rank {}: {}".format(
mpu.get_model_parallel_rank(), params
),
flush=True,
)
else:
params = 0
total_n_parameters = torch.tensor([params]).cuda(torch.cuda.current_device())
torch.distributed.all_reduce(total_n_parameters)
total_n_parameters = total_n_parameters.item()
return total_n_parameters
def setup_for_inference_or_eval(use_cache=True, overwrite_values=None, input_args=None):
"""
Initializes the model for evaluation or inference (doesn't load optimizer states, etc.) from command line args.
use_cache: bool
Whether to use key value caching in inference.
overwrite_values: dict
Optional Values to overwrite in the model config.
"""
from megatron.neox_arguments import NeoXArgs
from megatron.initialize import initialize_megatron
from megatron.training import setup_model_and_optimizer
_overwrite_values = {
"checkpoint_activations": False,
"partition_activations": False,
"no_load_optim": True,
"optimizer": None, # prevent loading optimizer (no_load_optim alone won't work)
"zero_optimization": None, # disable zero optimization (won't be used in inference, and loading zero optimizer can cause errors)
}
if overwrite_values:
_overwrite_values.update(overwrite_values)
neox_args = NeoXArgs.consume_neox_args(
overwrite_values=_overwrite_values, input_args=input_args
)
neox_args.configure_distributed_args()
neox_args.build_tokenizer()
if neox_args.load is None:
raise ValueError("`load` parameter must be supplied to load a model`")
# initialize wandb
init_wandb(neox_args=neox_args)
# initialize megatron
initialize_megatron(neox_args)
# set up model and load checkpoint.
model, _, _, _ = setup_model_and_optimizer(
neox_args=neox_args,
use_cache=use_cache,
iteration=neox_args.iteration,
) # we use setup_model_and_optimizer instead of get_model in order to initialize deepspeed
print_rank_0("Finished loading model")
model.module.inference_mode(use_cache=use_cache)
return model, neox_args
class CharCounter:
"""
Wraps the data_iterator to count the number of characters in a batch
"""
def __init__(self, data_iterator, tokenizer):
self.tokenizer = tokenizer
self.data_iterator = data_iterator
self.char_count = 0
self.batch_count = 0
self.token_count = 0
self.total_time = 0
def tokens_per_char(self):
return self.token_count / self.char_count
def __iter__(self):
return self
def __next__(self):
start = time.time()
batch = self.data_iterator.__next__()
for b in batch["text"]:
self.token_count += len(b)
self.char_count += len(self.tokenizer.detokenize(b.tolist()))
self.batch_count += 1
end = time.time()
self.total_time += end - start
return batch
def _kernel_make_viewless_tensor(inp, requires_grad):
"""Make a viewless tensor.
View tensors have the undesirable side-affect of retaining a reference
to the originally-viewed tensor, even after manually setting the '.data'
field. This method creates a new tensor that links to the old tensor's
data, without linking the viewed tensor, referenced via the '._base'
field.
"""
out = torch.empty(
(1,),
dtype=inp.dtype,
device=inp.device,
requires_grad=requires_grad,
)
out.data = inp.data
return out
class MakeViewlessTensor(torch.autograd.Function):
"""
Autograd function to make a viewless tensor.
This function should be used in cases where the computation graph needs
to be propagated, but we only want a viewless tensor (e.g.,
ParallelTransformer's hidden_states). Call this function by passing
'keep_graph = True' to 'make_viewless_tensor()'.
"""
@staticmethod
def forward(ctx, inp, requires_grad):
return _kernel_make_viewless_tensor(inp, requires_grad)
@staticmethod
def backward(ctx, grad_output):
return grad_output, None
def make_viewless_tensor(inp, requires_grad, keep_graph):
"""
Entry-point for creating viewless tensors.
This method should be used, rather than calling 'MakeViewlessTensor'
or '_kernel_make_viewless_tensor' directly. This method acts as a
switch for determining if an autograd function or a regular method
should be used to create the tensor.
"""
# return tensor as-is, if not a 'view'
if inp._base is None:
return inp
# create viewless tensor
if keep_graph:
return MakeViewlessTensor.apply(inp, requires_grad)
else:
return _kernel_make_viewless_tensor(inp, requires_grad)
|